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Review

Functions and Toxicity of Nickel in Plants:
Recent Advances and Future Prospects

Nickel is an essential nutrient for plants. However, the amount of Ni required for nor-
mal growth of plants is very low. Hence, with the level of Ni pollution in the environ-
ment increasing, it is essential to understand the functional roles and toxic effects of
Ni in plants. We briefly review advances in relevant research over the past 20 years.
Based on the available data, two new indirect pathways of Ni toxicity in plants are
proposed. These are (i) interference with other essential metal ions and (ii) induction
of oxidative stress. Research should focus on these mechanisms at the protein and
molecular levels. Further research should also be directed at plant species that are
capable of accumulating Ni at high concentration, so-called hyperaccumulators. Such
species can provide model systems to study the mechanisms of Ni tolerance and can
also be used for phytoremediation by removing nickel from polluted environment.
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1 Introduction

Nickel, first isolated by the Swedish chemist Cronstedt in 1751, is
the twenty-second most abundant element in the earth's crust [1, 2],
where it occurs in igneous rocks as a free metal or together with
iron. It has an atomic number of 28 in the periodic table and an
atomic weight of 58.71. Ni is a hard, ductile and silvery-white heavy
metal that can take a high polish. In general, naturally occurring
concentrations of Ni in soil and surface waters are lower than 100
and 0.005 ppm, respectively [3, 4]. Ni is also released into the envi-
ronment from anthropogenic activities, such as metal mining,
smelting, fossil fuel burning, vehicle emissions, disposal of house-
hold, municipal and industrial wastes, fertilizer application and
organic manures [5, 6]. Ni is mainly used as a raw material in the
metallurgical and electroplating industries, as a catalyst in the
chemical and food industry, and as a component of electrical bat-
teries [7]. In recent years, Ni pollution has been reported from across
the world, including Asia [8 – 11], Europe [4, 12 – 14] and North
America [3, 15, 16]. Pollution mainly results from effluent disposal
from mining, smelting and electroplating industries, and from sew-
age sludge and compost [17 – 19]. Ni2+ concentrations may reach
26 000 ppm in polluted soils [4, 5] and 0.2 mg/L in polluted surface
waters [20, 21]; 20 to 30 times higher than found in unpolluted
areas. Soil and water contamination with Ni has become a world-
wide problem [22, 23].

Ni is essential for plants [24 – 26], but the concentration in the
majority of plant species is very low (0.05 – 10 mg/kg dry weight)
[27]. Further, with increasing Ni pollution, excess Ni rather than a
deficiency, is more commonly found in plants [5, 6]. Toxic effects of
high concentrations of Ni in plants have been frequently reported,

for example inhibition of mitotic activities [28], reductions in plant
growth [29] and adverse effects on fruit yield and quality [30].
Extremely high soil Ni concentrations have left some farmland
unsuitable for growing crops, fruits and vegetables [31].

Although many reports have focused on the toxic effects of Ni on
plants, our knowledge of its toxicity is incomplete, and the detailed
mechanisms involved are poorly understood. In this review, we aim
to bring together advances made over the past 20 years, paying par-
ticular attention to uptake and transport of Ni in plants, its toxic
effects, and to the biology of Ni hyperaccumulator species. We also
identify aspects that warrant further attention in future research
efforts.

2 Uptake of Ni in Plants

Ni has been identified as a component of a number of enzymes,
including glyoxalases (family I), peptide deformylases, methyl-CoM
reductase and ureases, and a few superoxide dismutases and hydro-
genases [32, 33]. Therefore, Ni plays a role in various important met-
abolic processes, including ureolysis, hydrogen metabolism, meth-
ane biogenesis and acitogenesis [26, 34 – 36]. Ni may also have other
functions that have yet to be discovered in plants, but that may be
revealed with further study and use of new techniques. Since Ni is
essential for plant metabolism, its uptake and transport in plants is
involved in some important physiological processes.

The uptake of Ni in plants is carried out mainly by root systems
via passive diffusion and active transport [37]. The ratio of uptake
between active and passive transport varies with species, Ni form
and concentration in the soil or nutrient solution [38, 39]. For exam-
ple, soluble Ni compounds can be absorbed via the cation transport
system. Since Cu2+ and Zn2+ inhibit Ni2+ uptake competitively, these
three soluble metal ions seem to be absorbed by the same transport
system [40 – 42]. In addition, soluble Ni compounds could also be
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absorbed via the Mg ion transport system, because of the similar
charge/size ratio of the two metal ions [43]. Nevertheless, Mg2+ has
no inhibitory effect on Ni2+ absorption [40, 41]. Secondary active
transport of chelated Ni2+ is possible, and corresponding proteins
that specifically bind Ni2+, such as HoxN (high-affinity nickel trans-
port protein, a permease) [44, 45], metallothionein (MT) [46] and
metallochaperones [47 – 49] have been reported (see Fig. 1).

The uptake of Ni by plants depends on Ni2+ concentrations [40],
plant metabolism [50], the acidity of soil or solution [3, 16, 51], the
presence of other metals [52 – 54] and organic matter composition
[55, 56]. For example, the uptake of Ni2+ by Lathyrus sativus reportedly
increased with increasing pH up to 5.0, then decreased as pH is
increased up to 8.0 [57]. The uptake of Ni2+ by Berkheya coddii has been
found to be inhibited by Ca2+ and Mg2+ [58]. However, both Ca2+ and
Mg2+ are reportedly non-competitive inhibitors of Ni2+ influx in
excised barley roots [59]. In these roots, Zn2+, Cu2+, Co2+, Cd2+, and
Pb2+ inhibited Ni2+ influx, whereas Mn2+ did not. Amongst these ions,
Zn2+ and Cu2+ were strongly competitive, Co2+ was weakly competi-
tively and Cd2+ and Pb2+ appeared to be non-competitive with Ni2+

[59]. The adsorption of Ni2+ by Datura innoxi was enhanced via the
application of ethylenediaminetetraacetic acid (EDTA) to the soil
surface [56]. In addition, it was reported that other factors can influ-
ence the uptake of Ni2+, such as length of season, method of sowing
seed, and soil geochemical properties (aquifer characteristics, sur-
face area, dielectric constant, etc.) [51, 60, 61].

3 Transport and Distribution of Ni in Plants

Ni is transported from roots to shoots [62] and leaves [63] through
the transpiration stream [64] via the xylem. This essential element is
supplied to meristematic parts of the plants by retranslocation
from old to young leaves, and to buds, fruits and seeds, via the
phloem [3, 65 – 67]. This transport is tightly regulated by metal-

ligand complexes [68 – 73] and proteins that specifically bind Ni [47,
74] (see Fig. 1). Metal ligands, such as nicotianamine (NA), histidine
(His) and organic acids (citric acid and malate ions), can act as intra-
cellular chelators, which bind Ni in the cytosol or in subcellular
compartments for transport, translocation and accumulation
within plants [75 – 78]. For example, there have been reports of Ni-
NA complexes in the roots of Thlaspi caerulescens [69], Ni-His in the
roots of Alyssum lesbiacum, Alyssum montanum and Brassica juncea [75,
77, 79], and Ni-citrate in leaves of Thlaspi goesingense and Thlaspi
arvense [68, 76]. Organic acids, such as citric and malic acids, provide
both a source of protons for solubilization and anions for Ni chela-
tion [80 – 82]. Three distinct Ni2+ metallochaperones (metallopro-
teins that aid in the insertion of the appropriate metal ion into a
metalloenzyme), including HypB, CooJ and UreE proteins, have
been identified in bacteria [47, 49, 83 – 85]. It is likely that similar Ni-
binding proteins will be found in plants. Recently, evidence was
found indicating that Yellow Stripe-Like Proteins (YSLs) may act as
transporters, particularly for Ni-NA, in a metal hyperaccumulating
plant [86].

Over 50% of the Ni absorbed by plants is retained in the roots [40].
This may be due to sequestration in the cation exchange sites of the
walls of xylem parenchyma cells and immobilization in the
vacuoles of roots [37]. Furthermore, a high percentage (over 80%) of
Ni in the roots is present in the vascular cylinder, while less than
20% is present in the cortex (see Fig. 2). This distribution suggests a
high mobility of Ni in the xylem and phloem [87 – 89]. It is notable
that the forms of Ni in xylem exudate are strongly influenced by pH.
Notably, Ni is mainly chelated by citrate at pH 5.0, but by histidine
at pH 6.5 [89]. In stems and leaves of the Ni hyperaccumulators (Alys-
sum bertolonii, Alyssum lesbiacum and Thlaspi goesingense), Ni has been
found to be distributed preferentially in the epidermal cells, most
likely in the vacuoles rather than in the cell wall [90]. However,
Kr�mer et al. [76] reported that 67 to 73% of Ni in the leaves of Thlaspi
goesingense was associated with the cell wall. This discrepancy may
be due to the different Ni concentrations and methods of sample
preparation used [90]. The consensus is that Ni in stems and leaves
are mainly located in the vacuoles, cell walls and epidermal tri-
chomes associated with citrate [86, 91], malate and malonate [92,
93] (see Fig. 2). However, within cells the Ni contents of different
organelles and cytoplasm may differ substantially. Timperley et al.
[94] found over 87% of Ni in the cells of leaves of four species located
in the cytoplasm and vacuoles, while chloroplasts contained 8 to
9.9% and mitochondria and ribosomes contained only 0.32 to
2.85%.

4 Toxic Effects of Ni on Plants

Although Ni is an essential metal and plays important roles in plant
metabolism [24, 95], Ni toxicity has become a particular concern,
due to its increased industrial use. Under Ni stress conditions, many
common Ni-detoxification responses appear in plants. These
responses include the formation of Ni2+-organic acid and Ni2+ – NA
complexes [76, 90, 96], the overproduction of NA and it's synthase
[69, 97, 98], and high levels of free histidine [99]. Other responses
include the induction of MTs and thiol glutathione [100, 101], and
high concentrations of glutathione, Cys and O-acetyl-L-serine (OAS)
[102]. In addition, some enzyme activities may be enhanced, such as
serine acetyltransferase (SAT) and glutathione reductase [103]. How-
ever, under excess Ni conditions, toxicity symptoms in plants will
develop.
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Figure 1. The main pathways of Ni uptake and transport in plants. The
chelators include nicotianamine (NA), histidine (His), citrate, organic
acids and proteins with various important functions, including permeases,
metallothionein (MT), metallochaperones and YS1-like proteins (YSLs).
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Responses to toxicity differ substantially according to plant spe-
cies, growth stage, cultivation conditions, Ni concentration and
exposure time [63, 87, 104 – 107]. In general, critical toxicity levels
are A10 mg/kg dry weight (DW) in sensitive species [13], A50 mg/kg
DW in moderately tolerant species [108, 109], and A1000 mg/kg DW
in Ni hyperaccumulator plants, such as Alyssum and Thlaspi species
[90, 110]. In sensitive species (for example, barley, water spinach
and wheat), chlorosis and necrosis of leaves can appear after plants
are treated with Ni at very low concentrations (f0.2 mM or 11.74
ppm) for less than a week [30, 111, 112]. According to Molas [113],
phytotoxicity and accumulation in cabbage decreased in the follow-
ing order after treatment with different chemical forms of Ni: Ni(II)-
Glu A NiSO4 N 7H2O A Ni(II)-citrate S Ni(II)-EDTA. Plants grown in Ni-
contaminated soil and media show various responses and toxicity
symptoms including retardation of germination [114], inhibition of
growth [28, 30, 115], reduction of yield [28, 116 – 118], induction of
leaf chlorosis and wilting [30, 118], disruption of photosynthesis
[29, 30, 116, 119, 120], inhibition of CO2 assimilation [13, 116], as
well as reductions in stomatal conductance [104, 121].

4.1 Growth and Development Inhibition and
Reduction of Yield

There have been many reports on the effects of Ni on germination
and growth in plants, including the following. The germination of

pigeonpea was found to decrease by circa 20% in a 1.5 mM solution
of Ni, with the percentage germination related to Ni concentration
[28, 114]. Exposure of 42 day-old cabbage plants to 0.5 mM Ni for
eight days did not produce any perceptible difference in growth,
but their subsequent growth was retarded [118]. The shoot growth
of wheat was clearly inhibited when treated with 0.2 mM Ni [30].
The roots of Nicotiana tabacum became dark brown within 7 to 10
days of exposure to 0.43 mM Ni and growth of the plants was
severely inhibited [115].

Other reports show that accumulation of Ni seriously affects the
yield of plants, significantly decreasing the numbers of seeds/pod,
100-seed weight and seed yield per plant [122]. The total dry matter
accumulation in roots, shoots and the total biomass may also
decrease when plants are stressed by Ni [28, 118], probably due to
reductions in leaf blade area and leaf density [116], with accompany-
ing reductions in numbers of flowers and fruits [117]. Overall, reduc-
tions in plant yield can be attributed to poor plant development
and reduced supply of nutrients to the reproductive parts [10].

4.2 Induction of Leaf Chlorosis, Necrosis and Wilting

Excess Ni has been reported to cause leaf necrosis and chlorosis of
plants [3, 37, 87, 123]. Chlorosis and along-vein necrosis appeared in
newly developed leaves of water spinach after plants were treated
with 0.085 to 0.255 mM (5 – 15 ppm) Ni for a week [111]. Ni at a con-
centration of 0.5 mM produced dark brown necrotic spots along the
leaf margins and decreased water potential and transpiration rate,
resulting in wilting of outer leaves and necrosis of inner leaves of
cabbage [118]. Barley grown in 0.1 mM Ni for 14 days showed chloro-
sis and necrosis of leaves [112]. After three days, treatment at 0.2
mM Ni reduced relative water content of wheat shoots [30]. Rice
(Oryza sativa L.) grown in a nutrient medium containing 0.5 mM Ni
showed a significant decrease in water content [124]. However, these
typical visual symptoms of Ni toxicity may also be due to deficien-
cies of other essential metals, such as Fe, Cu, Zn, and Mn [125, 126].

4.3 Disruption of Photosynthesis

The influence of Ni on photosynthesis is pervasive, occurring both
in isolated chloroplasts and whole plants [29, 122, 127, 128]. Ni dam-
ages the photosynthetic apparatus at almost every level of its organ-
ization, including destroying cells of mesophyll and epidermal tis-
sue [121] and decreasing chlorophyll content (chlorophyll a, b, total
chlorophyll and chlorophyll a/b ratio) [10, 30, 63, 116, 118, 120,
129]. Nickel also damages the thylakoid membrane and chloroplast
grana structure [29, 119], reducing the size of grana and increasing
the number of non-appressed lamellae [116].

At the biochemical level, Ni affects light-harvesting complex II
(LHCII) [130, 131] and the amounts of xanthophylls and carotenoids.
It also interferes with the photosynthetic electron transport chain
[132, 133] and its intermediates (such as cytochromes b6f and b559)
in leaves [63, 104]. The inhibition of electron transport is mainly on
the donor side of photosystem II (PSII) [127, 132] and the binding
site for QB, the secondary quinine acceptor of PSII [133, 134]. Further
studies on photosynthetic protein complexes have suggested that
Ni mainly inactivates photosystem I (PSI) in vivo [127], whereas it
primarily targets PSII in vitro [122]. A recent study on spinach leaves
in vitro showed that two proteins associated with the oxygen-evolv-
ing complex of PSII (the extrinsic 16 and 24 kDa polypeptides) were
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Figure 2. The distribution of Ni in plants. More than 50% of Ni is retained
in the roots, and over 80% of the Ni in the roots is present in the vascular
cylinder. Ni in stems and leaves are mainly located in the vacuoles, cell
walls and epidermal trichomes associated with chelators, such as nico-
tianamine (NA), histidine (His), citrate, organic acids and proteins with
various important functions, including permeases, metallothionein (MT),
metallochaperones and YS1-like proteins (YSLs).
Abbreviations in this figure: Cell wall (CW), Chloroplasts (Chl), Cortex
(Co), Cytoplasm (Cp), Endodermis (En), Epidermal trichomes (Et), Epi-
dermis (Ep), Lower epidermis (LEp), Nuclear (N), Palisade parenchyma
(PP), Phloem (P), Pith (Pi), Root hair (Rh), Spongy parenchyma (SP),
Upper epidermis (UEp), Vacuoles (Va), Vascular cylinder (VC), Xylem
(X).
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depleted following treatment with 1 mM Ni [128]. Taking these stud-
ies together, the disruption of photosynthesis by Ni cannot be attrib-
uted to any single factor and appears to result from its combined
effects on chloroplast structure, chlorophyll content and photosyn-
thetic protein complexes.

5 Toxicity Mechanisms of Ni in Plants

Although Ni toxicity in plants has been extensively reported, the
detailed mechanisms involved are still poorly understood. The tox-
icity of Ni is likely to be caused by indirect mechanisms, because it
is not an active or redox metal. Based on analyses of the available
data, we propose two mechanisms of Ni toxicity in plants: interfer-
ence with other essential metal ions and induction of oxidative
stress.

5.1 Interference with Other Essential Metal Ions

It is well known that other metals as well as Ni, such as K, Na, Ca,
Mg, Fe, Cu, Zn, and Mn are essential for plants [135]. Ni has some
similar characteristics to Ca, Mg, Mn, Fe, Cu, and Zn. Therefore, Ni
may compete with these metals in absorption and transpiration
processes [40 – 42, 136 – 138]. As a result of competition, Ni at high
concentrations may inhibit the absorption of these metals, decrease
their concentration and even lead to their deficiency in plants [10,
123, 139, 140]. Subsequently, this may affect important physiologi-
cal processes, and ultimately result in toxic effects [30, 141, 142]. For
example, Ni can decrease Mg (or Fe) uptake and its supply to aerial
parts via competition, and then induce deficiencies of these ele-
ments in plants. This can result in the retardation of germination,
growth suppression, and reductions in yields [28, 37, 114, 115].
These inhibitory effects of Ni on the growth of plants can be reduced
by supplying additional Mg (or Fe) ions [141 – 143]. Therefore, Ni tox-
icity in plants is partly due to interference with other essential
metal ions. In addition, Ca2+ has been shown to reduce the toxic
effects of Ni2+ on root development in Alyssum bertolonii Desv. [144],
while Cu seemed to increase Ni toxicity in terms of reduced vitality
and growth of Scots pine [145].

Many enzymes, such as superoxide dismutase (SOD) and catalase
(CAT), are metalloenzymes containing Fe, Cu, Zn, or Mn in their
prosthetic groups. Since excess Ni has been shown to decrease the
contents of Fe [118], Cu and Zn [146] in plant tissues, it can be specu-
lated that Ni may reduce the biosynthesis of these metalloenzymes
by causing deficiencies of these essential metals [30]. Further studies
on photosynthesis in plant leaves suggest that Ni can competitively
remove Ca ions from the Ca-binding site in the oxygen evolution
complex [128] and replace the Mg ion of chlorophyll [138, 147 –
149], which may eventually inhibit the PSII electron transport
chain.

5.2 Induction of Oxidative Stress

Increasing evidence suggests that Ni toxicity in plants is also associ-
ated with oxidative stress [28, 30, 115, 150]. Excessive Ni leads to sig-
nificant increases in the concentration of hydroxyl radicals, super-
oxide anions, nitric oxide and hydrogen peroxide [115, 120, 151 –
154]. Since Ni is not a redox-active metal, it cannot directly generate
these reactive oxygen species (ROS). However, it interferes indirectly
with a number of antioxidant enzymes [118, 154 – 158], for example,

SOD, CAT, glutathione peroxidase (GSH-Px), glutathione reductase
(GR), peroxidase (POD), guaiacol peroxidase (GOPX), and ascorbate
peroxidase (APX). Exposure of plants to Ni at low concentrations
(= 0.05 mM) and/or for short times has been shown to increase the
activities of SOD, POD, GR, and GOPX in order to enhance the activa-
tion of other antioxidant defenses and hence lead to the removal (or
scavenging) of ROS [102, 158 – 160]. However, excess Ni has been
found to reduce the activity of many cellular antioxidant enzymes,
both in vitro and in vivo, and plant's capability to scavenge ROS,
leading to ROS accumulation and finally oxidative stress in plants
[11, 120, 161 – 163].

The activity of antioxidant enzymes may vary with the duration
and type of stress treatment, and between plant species (and plant
parts). For instance, in experiments by Gajewska and Sklodowska
[120] SOD and CAT activities decreased significantly in the leaves of
wheat plants in response to 100 lM Ni treatment for 3, 6 and 9 days,
whereas GSH-Px, GOPX and APX activities were increased. However,
the same authors [158] found that exposure of 14 day old pea plants
to Ni (10, 100, 200 lM for 1, 3, 6 and 9 days) resulted in reductions in
SOD activities in both leaves and roots, and APX activity in roots,
together with increases in APX activity in leaves, increases in gluta-
thione S-transferase (GST) activities in both leaves and roots (most
pronounced in roots), while CAT activity generally remained
unchanged. Ni at 0.5 mM concentration increased the activities of
SOD, GR and POD and decreased the activity of CAT in 6 day old seed-
lings of pigeonpea (Cajanus cajan L. Millspaugh) [28]. CAT and POD
activities in leaves decreased significantly after cabbage was treated
with 0.5 mM Ni for eight days [118]. The same tendency was found
for SOD, CAT and POD activities in leaves of Hydrocharis dubia in
response to 0.5, 1, 2, 3, 4 mM Ni treatments for three days [14]. Ni
has also been shown to increase the plasma membrane (PM) NADPH
oxidase, which was shown to be involved in Ni induced ROS genera-
tion in roots of 5 day old wheat seedlings (Triticum durum) [154].

ROS have been shown to damage cell membrane, proteins, lipids
and DNA (causing, inter alia, DNA base oxidation, DNA protein
cross-links, DNA gaps and breaks), resulting in lipid peroxidation
[115, 156, 157, 159], developmental defects and genetic instability
in plant species [43, 164 – 170]. For example, malondialdehyde
(MDA, a lipid peroxidation product) content in roots and shoots
increased, when pigeonpea plants were treated with 0.5 to 1.5 mM
Ni [28]. Similar results have also been reported in corn, wheat and
Alyssum species [115, 157, 159, 171]. In addition, Ni induced deple-
tion of low molecular weight proteins, such as GSH, may contribute
to the induction of oxidative stress in plants [28, 172].

6 Ni Hyperaccumulators

The growing concerns about environmental pollution and interest
in phytoremediation have stimulated several recent studies on Ni
hyperaccumulator plants, reflecting their potential to survive and
sequester high levels of Ni in tissues (from several thousands of mg/
kg up to 5% of dry biomass) without exhibiting phytotoxicity [173 –
175]. More than 310 species of Ni hyperaccumulators have been
identified [10, 173, 176, 177], including members of the Acantha-
ceae, Asteraceae, Brassicaceae, Caryophyllaceae, Fabaceae, Flacour-
tiaceae,Meliaceae, Myristicaceae, Ochnaceae, Poaceae, Rubiaceae,
Sapotaceae and Stackhousiaceae [178, 179] (http://en.wikipedia.org/
wiki/Hyperaccumulators:_Nickel). The family with the most such
species is the Brassicaceae, with more than 80 species which are
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capable of accumulating Ni to concentrations as high as 3% of shoot
dry biomass [179, 180]. These species have higher requirements for
Ni (e. g., up to 500 mg Ni/kg) than normal plants [90]. Stackhousia tryo-
nii Bailey (Stackhousiaceae), an herbaceous species from Australia,
has been shown to accumulate Ni in dry leaves at concentrations
exceeding 4% [181, 182]. In addition, it is notable that many aquatic
plants such as Typha [183, 184], Phragmites [185, 186], Eichhornia [187],
Azolla [188, 189], and Lemna [190], have the potential to remove heavy
metals from water [191 – 193]. The Ni removal efficiencies of these
particular species are 80% higher than those of non-accumulators
[183, 190].

Ni hyperaccumulator species are thought to have strategies simi-
lar to allelopathy that reduce interspecific plant competition, e.g.,
increasing Ni availability to other plants by depositing locally Ni
rich senescent leaves [194– 196]. In addition, these species have effi-
cient root absorption mechanisms which allow them to specifically
accumulate metals from soils and/or water. After root absorption,
Ni can be transported quickly into shoots and leaves of hyperaccu-
mulators and then sequestrated in the vacuole [175]. For these rea-
sons, Ni hyperaccumulators has been extensively used to remove Ni
from polluted soils and/or water; a so-called ,green' technology [23,
38, 176, 195 – 199].

Recent developments of analytical techniques have allowed some
of the mechanisms of Ni tolerance in hyperaccumulators to be
explored and described. For example, exceptionally high endo-
DNase activities [200] and elevated concentrations of protective
amino acids and proteins, such as free histidine [75], serine decar-
boxylase (SDC) [201] and metallothionein [46, 101], appear to con-
tribute to the high Ni tolerance of some species, by chelation and/or
facilitating the export of Ni from root to shoot in the xylem. In addi-
tion, ATP-phosphoribosyltransferase (ATP-PRT) expression has been
found to play a major role in regulating the pool of free histidine in
such species [202]. ROS and Ca ions have also been demonstrated to
participate in Ni induced alterations in the expression of various
proteins and genes in animal cells [203, 204].

7 Summary and Future Prospects

Scientific advances over the past 20 years suggest that Ni is absorbed
and redistributed in plants via cation and/or metal-ligand complex
transport systems. The toxic effects of nickel in plants reviewed here
can be summarized as illustrated in Fig. 3. Briefly, as a result of com-
petition with other essential metals or the induction of oxidative
stress, excess Ni inhibits growth and development of plants, induces
leaf chlorosis and wilting, and reduces total plant yields. Nickel tox-
icity also disrupts photosynthesis and alters related enzyme activ-
ities. However, the mechanisms operating at both protein and
molecular levels that result in these toxicity symptoms remain
largely unknown and require further study.

Growing concerns about Ni pollution in the environment have
led to research on phytoremediation, i. e., the use of hyperaccumu-
lator or wetland plants to remove and/or sequester Ni from soil and
water. However, many such plants have limited utility for phytore-
mediation, because of their slow growth, difficult propagation, sea-
sonal growth, and low biomass [205, 206]. Solutions to these prob-
lems are important and require further research. In addition,
although many studies regarding the mechanisms of Ni tolerance
in hyperaccumulators have been conducted, further studies are
needed to fully understand their details at both biochemical and

molecular levels. As an example, unique genes encoding the Ni-che-
lated proteins in Ni hyperaccumulators could be transferred to fast
growing species. This type of genetic modification may allow the
development of a plant specifically tailored for Ni phytoremedia-
tion with enhanced abilities to tolerate, accumulate and detoxify Ni
[207].
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