DIAGNOSE FOLIAR: PRINCÍPIOS E APLICAÇÕES Prof. Dr. Hélio Grassi Filho

Departamento de Recursos Naturais / Ciência do Solo Faculdade de Ciências Agronômicas — UNESP Botucatu — SP

INTRODUÇÃO

Princípios e Práticas:

- Observação de sintomas de carência em plantas
- Identificação química dos compostos
- Correlação entre nutrientes presentes no solo x planta x produtividade

Portanto:

⇒ 1ª Providência: Determinar os elementos presentes no solo ⇒ nutrientes essenciais

 \Rightarrow COMO??

Através da DIAGNOSE FOLIAR

Procedimento: "As raízes das plantas funcionam como solução extratora dos elementos. Se o elemento encontra-se na planta, em maior ou menor proporção, tem-se o fato como indicação de que está ou não em formas disponíveis no solo, e em quantidades proporcionais encontradas pela análise da folha.

2 Diagnose Visual

Regra Geral: Sintomas de deficiência aguda ⇔ Desenvolvimento e Produção são severamente afetados.

- •Requer acompanhamento sistemático
- •Comparação através da análise foliar
- •Prática e conhecimento da cultura

2.1 Sintomas Típicos de Deficiência Nutricional

•Sintoma Típico: "Deve-se ao fato de que um determinado elemento exerce sempre as mesmas funções, qualquer que seja a espécie da planta".

Exemplo: Zn ⇒ encurtamento dos internódios

Figura 1. Seqüência de eventos que conduzem aos sintomas de deficiência ou excesso de nutrientes nos vegetais (Malavolta et al., 1989).

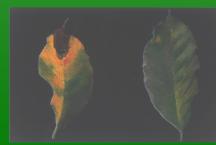
Evento	Deficiência de Zinco	Excesso de Alumínio
Alteração molecular	< AIA > hidrólise de proteínas	Pectatos "errados" < fosforilação < absorção iônica (P, K, Ca, Mg)
Modificação subcelular	Paredes celulares mais rígidas < proteína	Paredes celulares mal formadas Dificuldade de divisão celular
Alteração celular	Células menores e em menor número	Células menores com 2 núcleos
Modificação tecido (=sintoma)	Internódios mais curtos	Raízes curtas e grossas Folhas deficientes em K, Ca, Mg e P

2.2. Características Típicas de Deficiência Nutricional

Café

Potássio

Nitrogênio


Boro

Magnésio

Fósforo

Ferro

Manganês

Enxofre

Citros

Ferro

Magnésio

Manganês

Nitrogênio

Fósforo

Zinco



Milho

Nitrogênio

Magnésio

Fósforo

Boro

Manganês

Zinco

Soja

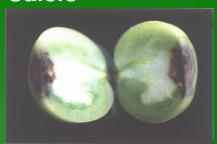
Boro

Cálcio

Potássio

Magnésio

Zinco



Tomate

Boro

Cálcio

Ferro

Potássio

Magnésio

Nitrogênio

Fósforo

Zinco

3. Diagnose Foliar

Definição: "Método para avaliar o estado nutricional das plantas baseado na análise mineral das folhas e, através dela, a necessidade de adubos e o seu efeito na qualidade do produto final"

3.1 Princípios da Análise de Tecidos das Plantas e Diagnose Foliar

Princípio ⇒ A ANÁLISE FOLIAR CONSISTE EM ANALISAR O SOLO USANDO A PLANTA COMO SOLUÇÃO EXTRATORA

Por quê? ⇒ AS FOLHAS SÃO OS ÓRGÃOS QUE MELHOR REFLETEM O ESTADO NUTRICIONAL, ISTO É, RESPONDEM MAIS ÀS VARIAÇÕES NO SUPRIMENTO DE NUTRIENTES

↓ Folhas

Foco das Atividades Fisiológicas das Plantas

Adubação⇒

Alterações na Nutrição Mineral

Reflete na Concentração de Nutrientes na Folhas

Premissa: Relação Significativa entre Fornecimento de Nutrientes/Teor de Nutrientes nas Plantas

⇒ Portanto, com a utilização da "Ferramenta": Diagnose Foliar

Detectar o nutriente limitante – "Lei de LIEBIG" Evitar e diferenciar manifestação de carência nutricional Evitar o sintoma de "Fome Oculta"

3.2 Compreende 3 etapas:

- ⇒ Amostragem
- ⇒ Preparo e Análise Química das Amostras
- ⇒ Interpretação dos Dados

3.2.1 Amostragem

Não é qualquer folha que reflete melhor o estado nutricional das plantas; Existem vários fatores que agem e interagem:

 \bigcup

Regra: Folhas Recém Maduras

Por quê?

"A Folha Fisiologicamente Ativa ou Madura é Aquela que Melhor Expressa o Estado Nutricional"

Rigor na Amostragem

Confiabilidade na Interpretação

Adequação do Programa de Adubação

Lembrem-se: A ANÁLISE NÃO É MELHOR QUE A AMOSTRA

Tabela 1. Amostragem para Diagnose Foliar das Principais Culturas.

Cultura	Época	Tipo de Folha	Nº De folhas/ha						
		Cereais							
Milho	Inflorescência	Abaixo da espiga	30						
Arroz	Perfilhamento	Medianas	30						
Trigo	Florescimento	1 ^a a 4 ^a folhas - pont	ta 30						
	Estimulantes								
Cafeeiro	Primavera/Verã o	3° e 4° pares	30						
Fibrosas									
Algodoeiro	Florescimento	Folhas/maçãs	30						
	F	rutíferas							
Citros	Fevereiro-Abril	Folhas de 6 meses	20						
Abacateiro	Verão	Folhas de 4 meses	100 folhas/20 pl.						
Maracujazeiro	Outono	4 ^a a partir da pont	a 60						
Videira	Fim floresc.	Base 1º cacho	30 a 60						
Hortaliças									
Tomateiro	Florescimento	4 ^a folha - ponta	40						
Leguminosas									
Soja	Fim Floresc.	1ª madura-ponta							
Feijão	Inicio Floresc.	1 ^a madura-ponta	30						

3.2.2 Interpretação dos Dados

Critérios para interpretação mais usados para o diagnóstico:

- -A) Nível Crítico;
- -B) Faixas de teores;
- -C) Sistema Integrado de Diagnose e Recomendação (DRIS)
- •A) Nível Crítico

"FAIXA DE CONCENTRAÇÃO DE NUTRIENTES RESPONSÁVEL POR 90 % DA PRODUÇÃO MÁXIMA DA CULTURA"

Determinação:

-Teor Foliar x Produção

Etapas:

- -Amostragem: época, idade e posição da folha
- -Áreas com produtividades distintas
- -Análise Foliar
- -Correlação entre Teor Foliar x Produção
- -Áreas x Produção
- -Estabelecimento das culturas

4. Fatores que Influenciam a Composição Mineral das Folhas

•Ação e Interação de Fatores

Representação:

Y=f(S, CI, I, PI, Pc, Pm,...),

Onde:

Y = teor foliar do elemento

S = solo e/ou adubo, calagem, gessagem, alumínio, etc.

Cl = clima-chuva, geada, frio, etc.

I = Idade da planta, época do ano

Pl = Planta (espécies, variedade, porta-enxerto

Pc = Práticas culturais (herbicidas, etc)

Pm = Pragas e moléstias

Comparar os resultados:

Ya = teor do nutriente na amostra

Yp = teor Padrão

Temos:

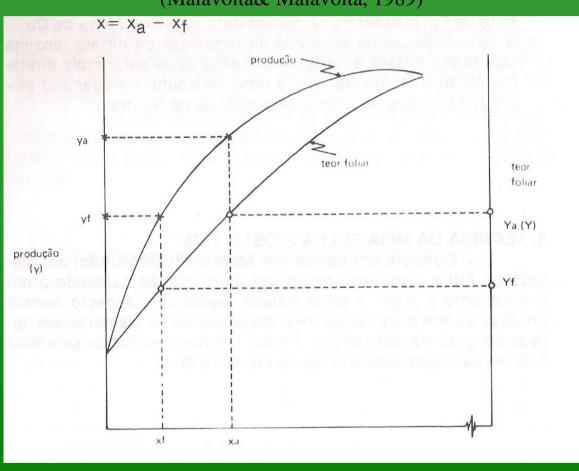
Ya<Yp = planta deficiente

Ya=Yp = sem problemas

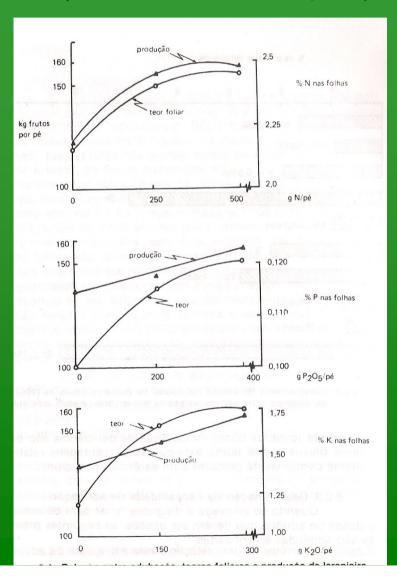
Ya>Yp = nutriente em excesso

- Observar a "Interação" para analisar o teor do nutriente foliar

Avaliar a Necessidade de Adubação


- Conhecendo-se o teor adequado do nutriente

Cálcular a dose do adubo.


Satisfazer as Premissas:

Teor Foliar x Dose do Fertilizante Dose do Fertilizante x Produção Teor Foliar x Produção Emprego da diagnose foliar como meio para determinar a dose de adubo.

(Malavolta& Malavolta, 1989)

Relação entre o suprimento de N, P_2O_5 e K_2O , colheita e composição foliar. (Malavolta & Violante Netto, 1989)

4.1 Parâmetros de Solo

- •Textura
- •CTC
- Densidade
- •Aeração
- ⇒ Afetam a disponibilidade de nutrientes

- •pH
- •Umidade
- •Temperatura

Tabela 2. Teores de macronutrientes nas folhas de cana-de-açúcar, variedade CB 41-76, cultivada em diferentes tipos de solo.

Tipos de	Composição em nutrientes em folhas de cana-de-açúcar (CB41-76) (g/kg)						
Solo	N	Р	K	Ca	Mg	S	
LR	20,4	2,1	12,4	11,0	2,3	1,6	
LE	21,9	1,8	13,9	9,7	1,8	2,2	
TE	19,9	1,8	13,6	6,7	1,6	2,1	
PVI	20,1	2,6	14,5	10,8	0,8	2,5	

Tabela 3. Levantamento nutricional de cafeeiros no sul de Minas Gerais pela análise de folha (1982/83).

Elemento	Valores médios observados nas folhas						
Analisado	LE	LV	PV	Cambissol	LR	TE	
N - g/kg	32,5	33,3	31,6	31,8	30,0	32,5	
P - g/kg	1,1	1,1	1,2	1,1	0,9	1,1	
K - g/kg	20,6	19,5	20,5	19,9	22,1	22,1	
Ca - g/kg	7,8	8,1	7,8	8,8	7,2	8,6	
Mg - g/kg	2,6	2,9	2,7	3,1	2,2	2,8	
B - mg/kg	30,9	33,0	28,0	31,1	35,9	34,1	
Zn - mg/kg	9,9	8,4	9,2	8,0	9,5	11,6	
Cu - mg/kg	21,2	22,4	50,5	23,3	35,7	73,8	
Fe - mg/kg	112,9	116,8	99,9	112,3	93,0	111,5	
Mn - mg/kg	187,4	174,1	210,6	222,9	144,5	269,0	

4.2 Espécies e Variedades

Comportamento Característico

Tabela 4. Variações nos teores foliares de laranjeiras "Baianinha", "Pera" e "Valência", tangerineiras "Ponkan" e "Murcote" e da limeira ácida "Tahiti" associadas ao porta-enxerto limoeiro Cravo. (Hiroce, 1987).

Elemento	Baianinha	Pera	Valência	Ponkan	Murcote	Tahiti
N (%)	2,71	2,40	2,82	2,81	2,32	1,80
P (%)	0,12	0,12	0,13	0,13	0,12	0,17
K (%)	1,77	0,81	1,22	1,26	1,18	1,28
Ca (%)	3,26	3,26	3,46	3,06	3,27	3,31
Mg (%)	0,25	0,34	0,40	0,43	0,40	0,48
S (%)	- 0 -	- 0 -	0,30	0,27	0,25	0,34
B (ppm)	- 0 -	- 0 -	51	54	66	78
Cu (ppm)	- 0 -	- 0 -	16	17	5	5
Fe (ppm)	- 0 -	- 0 -	248	200	117	103
Mn (ppm)	- 0 -	- 0 -	53	43	49	26
Zn (ppm)	- 0 -	- 0 -	25	25	28	17
Mo (ppm)	- o -	- 0 -	0,06	0,07	- 0 -	- 0 -

4.3 Clima

- •Influencia o crescimento e a produção:
 - -Temperatura
 - -Quantidade e distribuição das chuvas
 - -Duração do dia e noite

4.4 Idade Fisiológica e Parte da Planta a ser Amostrada

Fase Inicial do Estádio Vegetativo ⇒ Alta taxa de Absorção ⇒ Concentração no tecido é alta

Com o crescimento e desenvolvimento do vegetal ⇒ Diluição ⇒ ↓ Concentração de nutrientes

Portanto:

Tecido Fisiologicamente Jovem \Rightarrow Concentrações mais elevadas de nutrientes

De forma Geral:

Folhas Jovens =
$$\uparrow N$$
, P e K

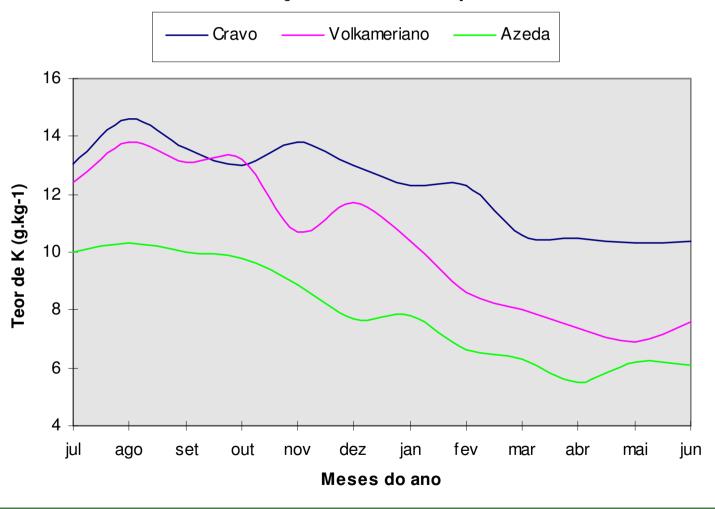
Tabela 5. Tendência na variação do teor foliar dos elementos com a idade das folhas.

Especie	Diminuição com a idade	Aumenta com a idade
Amora	Р	Ca, Mg
Cacaueiro	N, P, K	Ca, Mg
Cafeeiro	N, P, K, Zn	Ca, Mg, S, B, Ca, Mn
Cana-de-açúcar	N, P, K	Ca
Citros	N, P, K, Mg, Cu, Zn	Ca, B, Fe, Mn, Al
Citros (frutos)	N, P, K, Mg	Ca
Figo	N, P, K	Ca, Mg
Hortaliças	N, P, K	Ca
Macieira	N, P, K	Ca, Mg
Milho e sorgo	N, P, K	Ca
Pessegueiro	N, P, K, Cu, Zn	Ca, Mg, Mn, Fe, Al, B
Pinus	K	Ca

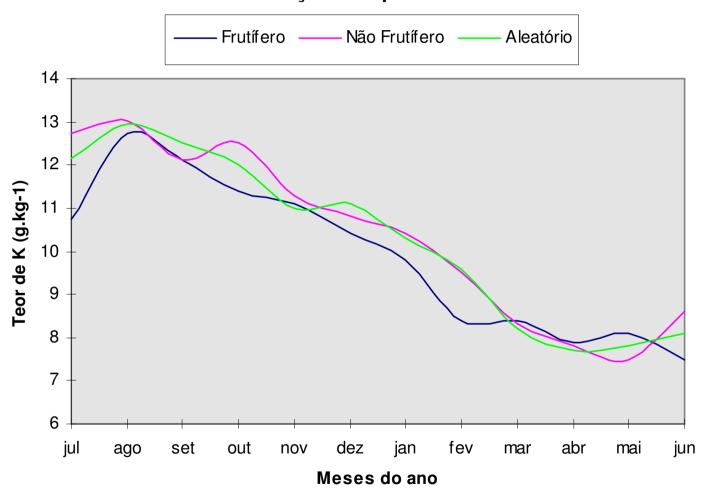
Tabela 6. Comparação da composição de folhas de laranjeira de 5 meses de idade colhidas em ramos frutíferos e em ramos não frutíferos.

Folhas de	Teores - g/kg			
ramos	N	Р	K	Mg
sem frutos	23,6	1,2	8,6	2,5
com frutos	15,3	0,8	3,8	3,5
significância	***	***	***	***

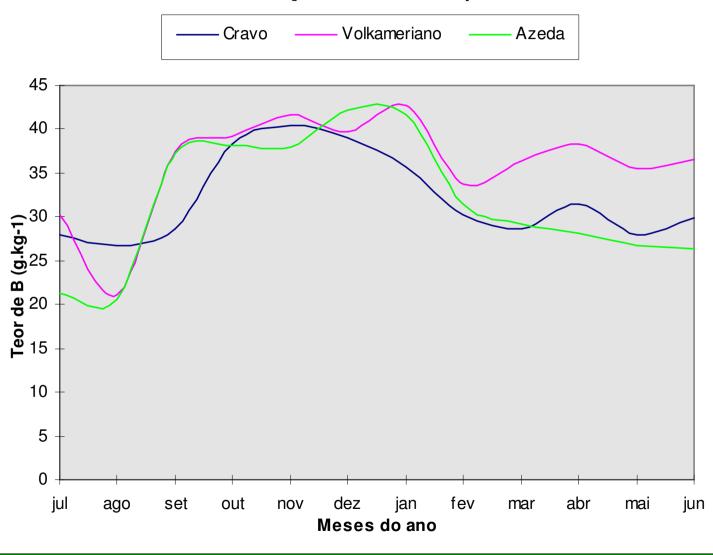
^{***} significativo a 0,1%

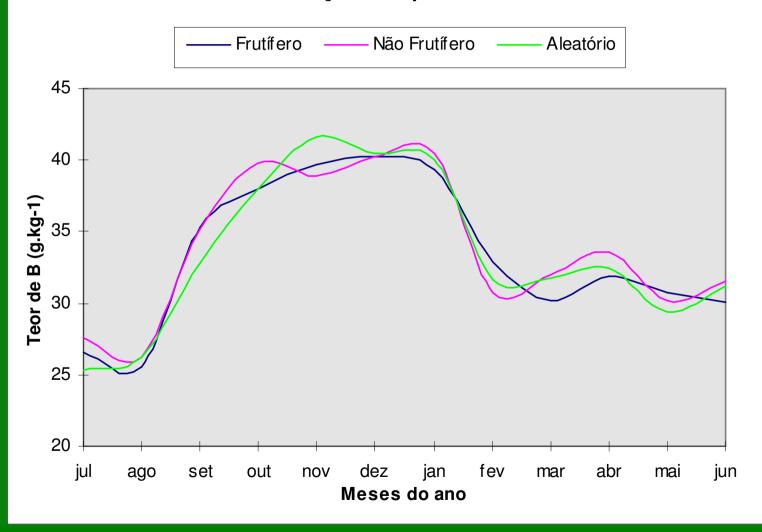

Tabela 7. Comparação entre os teores de nutrientes em folhas de ramos frutíferos (F) e não frutíferos (NF) (Rivero, 1968).

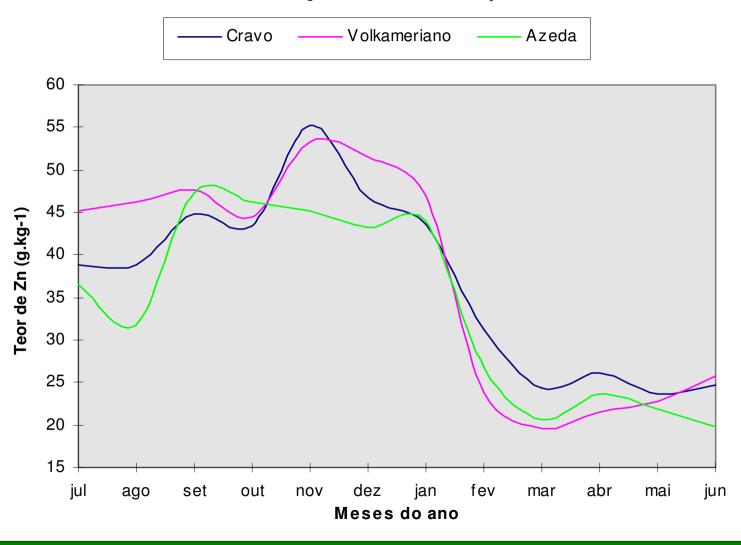
Elemento	Folha	Deficiente	Baixo	Adequado	Alto	Excessivo
N (%)	F	0,6-1,9	1,9-2,1	2,2-2,7	2,8-3,5	>3,6
	NF	< 2,2	2,2-2,3	2,4-2,6	2,7-2,8	>2,8
P (%)	F	< 0,07	0,07-0,11	0,12-0,18	0,19-0,29	>0,3
	NF	< 0,09	0,09-0,11	0,12-0,16	0,17-0,29	>0,3
K (%)	F	0,15-0,3	0,4-0,9	1,0-1,7	1,8-1,9	>2,0
	NF	< 0,70	0,7-1,1	1,2-1,7	1,8-2,3	>2,3
Ca (%)	F	< 2,00	2,0-2,9	3,0-6,0	6,1-6,9	>7,0
	NF	< 1,60	1,6-2,9	3,0-5,5	5,6-6,9	>7,0
Mg (%)	F	0,05-0,15	0,16-0,2	0,30-0,60	0,7-1,0	>1,0
	NF	< 0,16	0,16-0,25	0,26-0,60	0,7-1,1	>1,2
Cu (ppm)	F	< 4	4,1-5,0	5,1-15,0	15,0-20,0	>20,0
	NF	< 3,6	3,6-4,9	5,0-16,0	17,0-22,0	>22,0
Fe (ppm)	F	< 40	40-60	61-150	151-?	?
	NF	< 36	37-59	60-120	130-200	>250
Mn (ppm)	F	5-20	21-24	25-100	100-200	300-1000
	NF	< 16	16-24	25-200	300-500	>1000
Zn (ppm)	F	4-15	16-24	25-100	110-200	>200
	NF	< 16	16-24	25-100	110-200	>300

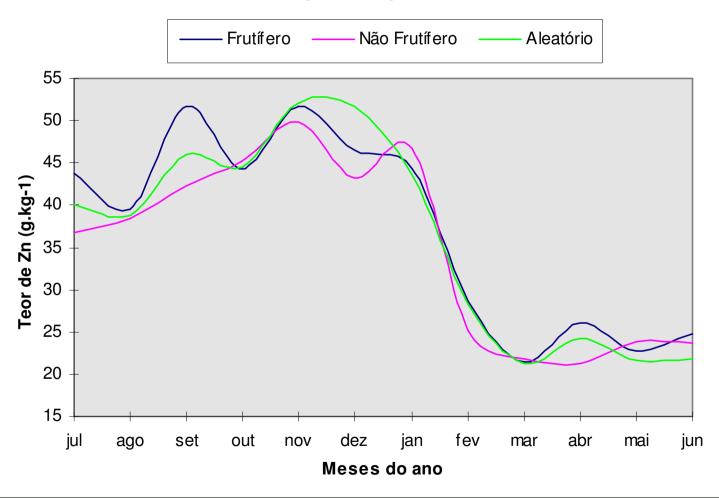

Tabela 9: Variação no teor foliar de nutrientes no cafeeiro durante o ano $(3^{\circ}$ par de folhas).

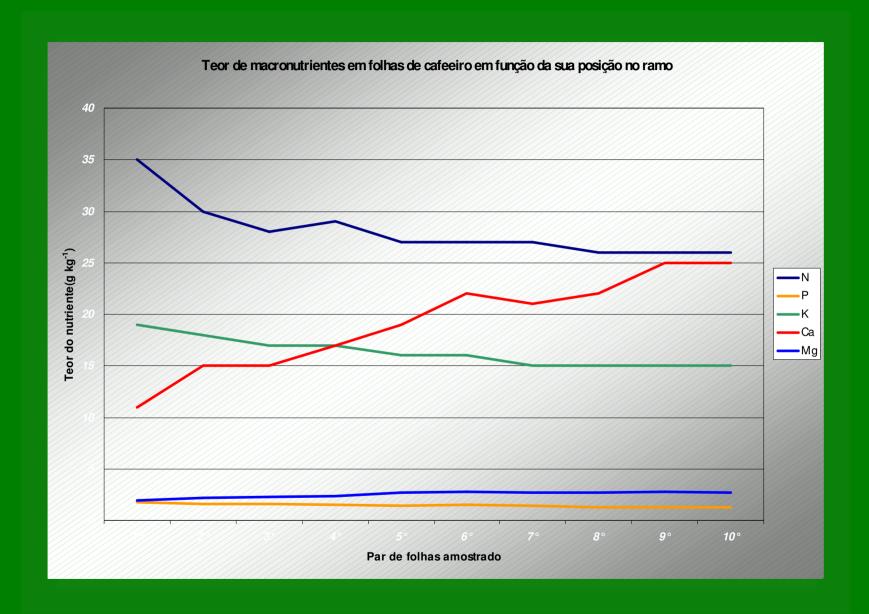
Elementos	Deze	mbro	Feve	reiro	Ma	aio	Ago	sto
	CF	SF	CF	SF	CF	SF	CF	SF
N(g/kg)	30,1	27,6	28,6	29,5	28,8	30,0	28,1	30,3
P(g/kg)	1,2	1,0	0,9	1,0	0,8	0,8	0,8	0,8
K(g/kg)	32,8	28,4	22,9	22,2	20,9	22,2	30,1	27,0
Ca(g/kg)	8,8	9,9	22,9	22,2	20,9	22,2	30,1	27,0
Mg(g/kg)	3,3	3,2	2,6	3,1	5,2	6,0	2,7	3,5
S(g/kg)	1,0	0,7	1,4	1,1	0,8	0,8	1,7	1,7
B(mg/kg)	66	66	76	60	99	72	77	62
Cu(mg/kg	18	15	44	30	22	24	32	24
Mn(mg/kg)	380	385	420	364	270	297	431	470
Zn(mg/kg)	11	10	8	8	9	11	9	7


Variação anual do teor de potássio em folhas de limoeiro Feminello em função de diferentes porta-enxertos

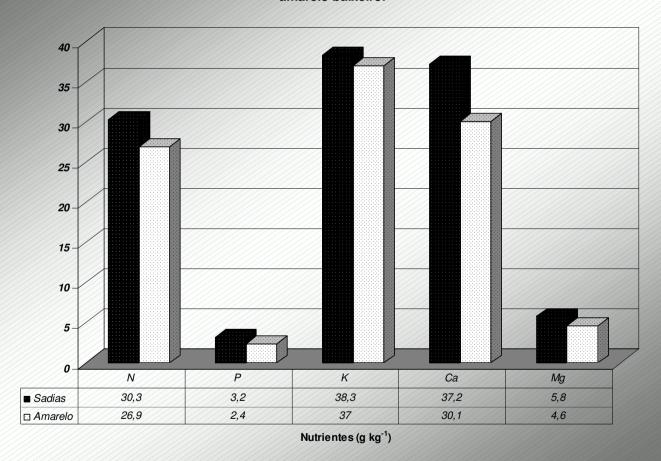

Variação anual do teor de potássio em folhas de limoeiro Feminello em função do tipo de ramo amostrado

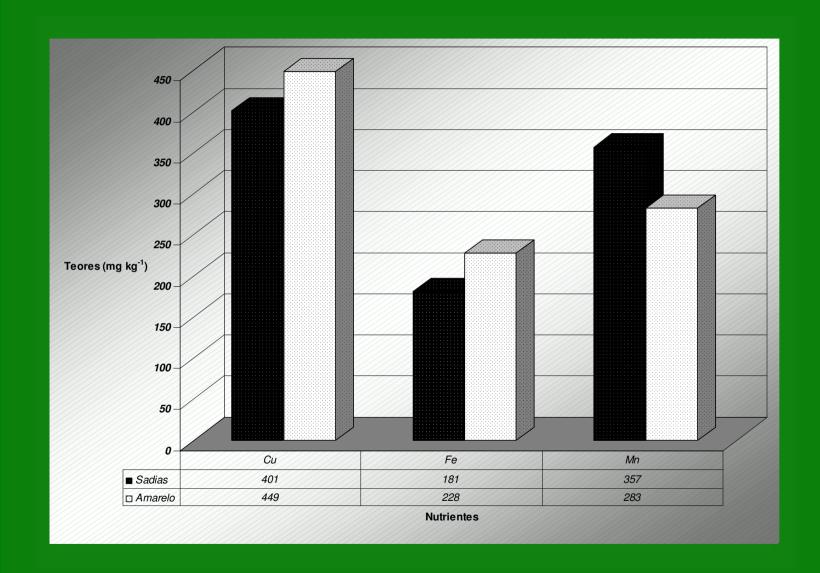

Variação anual do teor de boro nas folhas de limoeiro Feminello em função de diferentes porta-enxertos

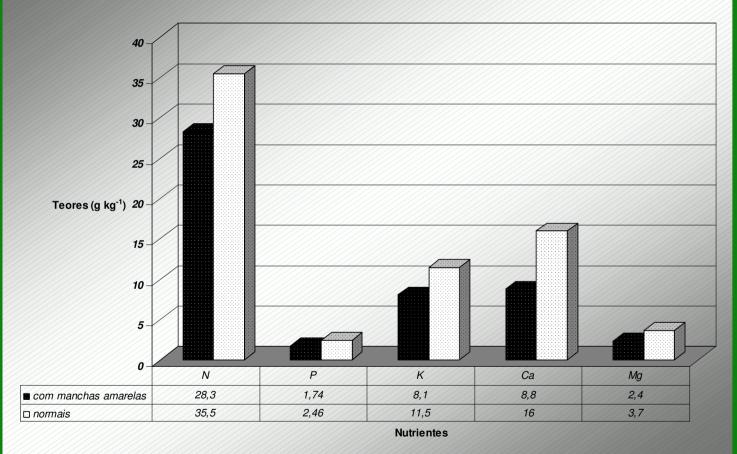

Variação anual do teor de boro nas folhas de limoeiro Feminello em função do tipo de ramo amostrado

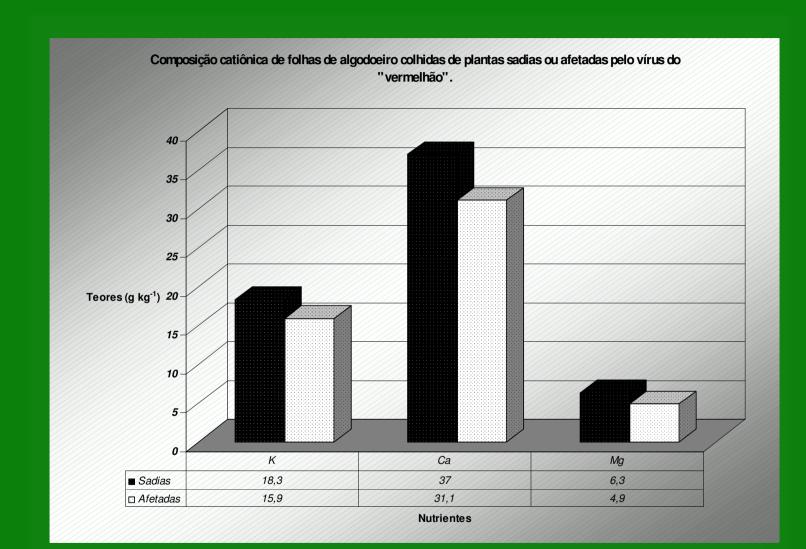


Variação anual do teor de zinco em folhas de limoeiro Feminello em função de diferentes porta-enxertos




Variação anual do teor de zinco em folhas de limoeiro Feminello em função do tipo de ramo amostrado




Resultado da análise foliar de tomateiros normais e afetados pelo amarelo baixeiro.

Composição mineral das folhas do amendoim sadio e infestado pela cigarrinha (Empoasca kraemeri)

4.5 Pragas e Moléstias

- Influenciam a composição mineral das folhas
 - Vírus, bactérias, fungos, nematóides

Tabela 11. Composição foliar de plantas sadias e afetadas pela Clorose Variegada dos Citros (CVC) ou Amarelinho.

Elemento	Sadias	Afetadas
N g/kg	25	20
P g/kg	1,5	1,8
K g/kg	12	4,6
Ca g/kg	49	49
Mg g/kg	1,7	1,4
S g/kg	2,7	2,3
B mg/kg	69	76
Cu mg/kg	41	33
Fe mg/kg	221	274
Mn mg/kg	27	30
Zn mg/kg	16	21

4.6 Práticas Culturais

- Calagem, gessagem, Adubação mineral e orgânica, irrigação

Tabela 10. Efeito da irrigação em laranjeira Natal/limão cravo na composição foliar e colheita (Hiroce, 1984).

Tratamento	g/kg	mg/kg		Produção
	Р	Fe Mn		t/ha
Herbicida	1,2	243	30	8,6
Capina	1,24	235	24	10
Guandu	1,26	235	32	10,5
Mucuna Preta	1,36	226	28	12,8
Cobertura Morta	1,55	199	23	17,6