

Uso Eficiente de Fertilizantes na Nutrição de Plantas

Cantarella, Joris, Soares, Vargas & Montezano

Instituto Agronômico Campinas

Uso eficiente de fertilizantes: roteiro

- Fertilizantes e ambiente
- BPM: boas práticas de manejo
- Acidez
- Água
- Formulações
- Desequilíbrios nutricionais
- Particularidades das culturas
- Fertilizantes de eficiência aumentada

Índices de eficiência de uso de nutrientes

RE (Recuperação aparente) $RE = (U - U_0)/F$

PE (Eficiência fisiológica) $PE = (Y - Y_0)/(U - U0)$

IE (Eficiência de utilização interna) IE = Y/U

AE (Eficiência agronômica) $AE = (Y - Y_0)F$ ou AE = RE X PE

PFP (Fator parcial de produt.) PFP = Y/F ou PFP = $(Y_0/F) + AE$

F: quantidade de fertilizante aplicada (todos em kg/ha)

Y: produtividade com o uso do fertilizante

Y₀: produtividade sem fertilizante

U: total de nutriente absorvido, com fertilizante

U₀: total de nutriente absorvido sem fertilizante

Fatores extra-agricultura podem afetar o comércio e percepção do consumidor

- Resíduos de pesticidas
- Condições de trabalho
- Poluição ambiental
 - Qualidade da água
 - Erosão
 - Pegada de carbono e GEE (kg CO₂/kg de produto...)
- Culturas para exportação são mais sensíveis a questionamentos

Nutrientes e impacto ambiental

- Impacto positivo: produção agrícola
- Impacto ambiental negativo:
 - Nutrientes em excesso no ecossistema
 - Metais pesados, desequilíbrio nutricional etc
 - Nutrientes transportados para fora do ecossistema
 - Problemas principalmente com N e P

N & P e o ambiente

Eutrofização e hipoxia: *Golfo do México*

P: eutroficação de águas
N: eutroficação & excesso
de nitrato em águas
Eficiência de uso: ≤ 50%
Sujeitos a perdas por
lixiviação, volatilização etc.
Excesso no ambiente =
potencial poluidor

Fertilizantes e gases de efeito estufa

- N: alto consumo de energia na fabricação (53 MJ/kg N; 1,400 m³/t NH₃) e alto impacto ambiental devido à emissão de N₂O no campo
 - $3.2 + 5.1 = 8.3 \text{ kg CO}_2 \text{eq/kg N}$
 - Agricultura: 80% do N₂O (antropogênica)
- Fertilizantes: 18% dos GEE da agricultura e 2,5% dos GEE (antropogênica) totais.

Agricultura (adubação) no foco da discussão de GEE

N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

P. J. Crutzen 1,2,3, A. R. Mosier 4, K. A. Smith 5, and W. Winiwarter 3,6

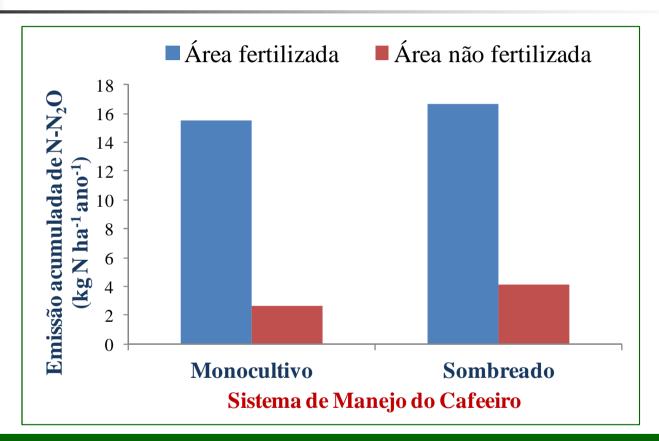
¹Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany

Nitrous Oxide (N_2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

A. R. Ravishankara,* John S. Daniel, Robert W. Portmann Science **326**, 123 (2009);

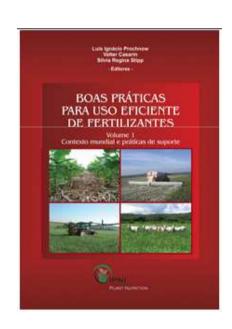
New Zealand's Fifth National Communication

UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE Including the Report on the Global Climate Observing System


Chemistry

and Physics

Emissão de gases de efeito estufa em café



Fator de emissão de N₂O: ~5% do N aplicado (250 kg/ha N)

BPM: boas práticas de manejo de fertilizantes

Aproveitamento médio de nutrientes ???

N: 60% P: 30% K: 70%

Teoria do 4-C
Fertilizante certo
Dose certa
Local certo
Época certa

Assunto debatido recentemente (IPNI 2010)

Balanço do consumo de nutrientes pelas culturas do café e laranja no Brasil: Safra 2008

Cultura	Consumo de nutrientes (t)			Fator de consumo§			Índice de Aproveitamento(%) ^δ		
	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
Café	261.979	77.182	203.963	5,5	12,1	3,9	18	8	26
Laranja	73.416	30.210	57.760	2,1	4,1	1,7	48	24	58

[§] Fator de consumo é a relação entre o consumo e a demanda das culturas.

Balanço simplificado de entradas e saídas (exportação) de nutrientes no campo

- Não mede eficiência
- ❖ Pode refletir um estágio a agricultura (construção da fertilidade, depauperamento dos solos etc.
- Mas, dá ideia de situações em que pode haver desequilíbrios ou mau uso de insumos
- Culturas perenes: geralmente entradas são maiores que saídas.

⁵ Índice de aproveitamento é o percentual da demanda em relação ao consumo

Balanço do consumo de nutrientes por culturas

Culturas perenes: geralmente entradas são maiores que saídas: alto valor da produção

- Construção da fertilidade; altas taxas de fixação (P, K)
- Nutrientes gastos na formação das plantas: colheita é pequena proporção da biomassa total
- Análise do solo permite monitorar evolução da fertilidade Correções futuras nas adubações são fáceis
- Nitrogênio:

Detecção difícil
Alta mobilidade no ecossistema
Riscos ambientais
Desperdício de recursos

Apenas parte dos nutrientes é exportada com os frutos

	N	Р	K	Ca	Mg	S
Absorção kg/ha	211	16	187	72	26	9
% no fruto	29	34	39	13	27	27
Exportação kg/ha	61	5	72	9	7	3

Catuaí em crescimento (3º. ano) 5000 plantas/ha, 30 sc/ha de café

Prezotti et al. (2000)

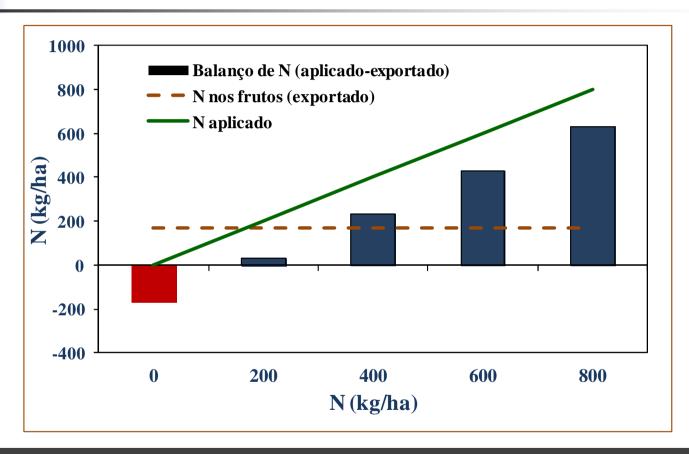
Destino do N aplicado (15N) em café fertirrigado (LEPA) na Bahia

N	Planta toda	Serapi-	Solo	Lixiviado	Outras
aplicado		lheira			perdas
kg/ha	kg/ha de N				
200	149 (75%)	43	6	3	0
400	164 (41%)	48	47	15	125
600	273 (46%)	82	94	46	105
800	229 (29%)	95	158	104	214

Café: 7 a 8 anos, 3,8 x 0,5 m.

Manejo anterior da área: 600 kg/ha N

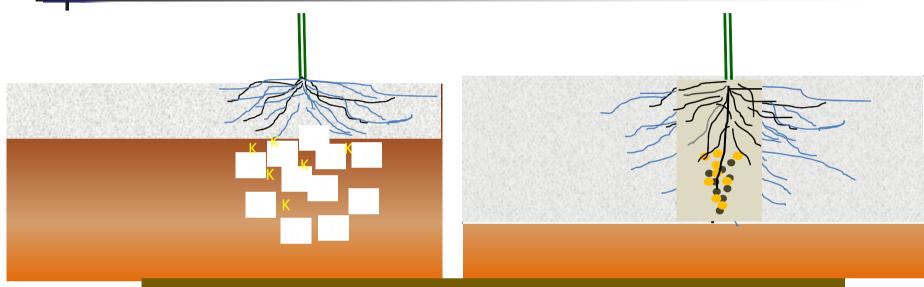
Fertirrigação: 26 vezes, até colheita, ¹⁵N uréia


Solo: Latossolo Vermelho Amarelo alumínico típico, 81% areia

Fonte: Bruno (2010)

Balanço de N aplicado em café

Café irrigado, em solo arenoso, no sul da Bahia: altas doses aplicadas nem sempre são aproveitadas pelas plantas



Acidez do solo afeta eficiência de uso de nutrientes

- pH condiciona a disponibilidade dos íons no solo
 - Acidez natural de solos intemperizados no Brasil
 - Inclusive subsolo
 - Acidez provocada por fertilizantes e manejo
 - Culturas e variedades têm diferentes sensibilidades à acidez
- Corretivos têm lenta mobilidade no perfil
- É importante fazer correção na implantação para facilitar a incorporação de calcário
 - Calagens (e gessagens) de manutenção nem sempre corrigem acidez em profundidade

Correção de acidez deve ser feita no maior volume de solo na implantação da cultura

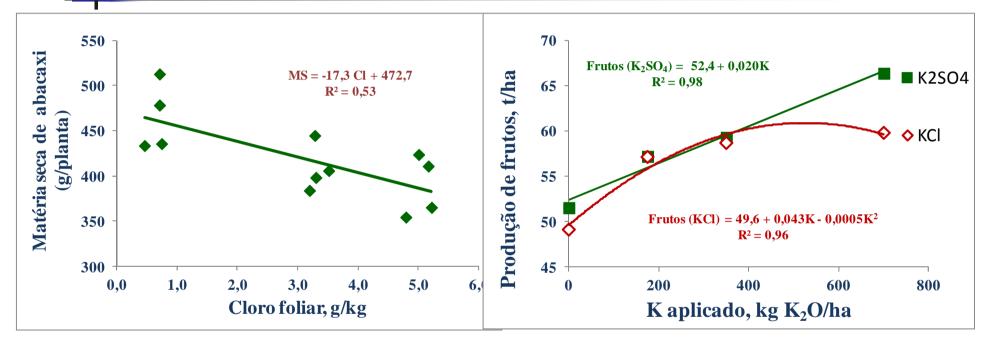
Correção em subsuperfície:

Crescimento de raízes

Melhor aproveitamento da água e nutrientes

Culturas sensíveis e solos pobres:

Incorporação profunda de nutrientes (P, Zn, outros micronutrientes) e dose adicional de calcário



Composição do fertilizante

- Desbalanço ou excesso de alguns alguns íons podem afetar resposta da planta e eficiência de uso do nutriente:
 - Cloro

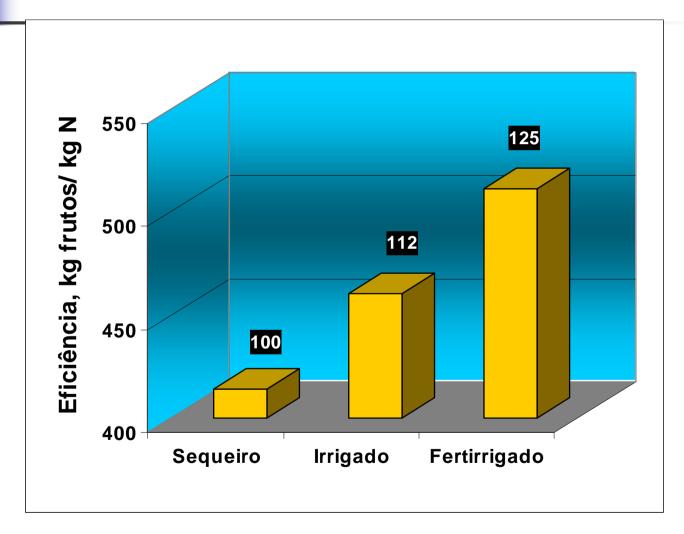
•

Eficiência X fonte do nutriente: íon acompanhante

Excesso de cloro pode reduzir produção e qualidade do fruto em abacaxi

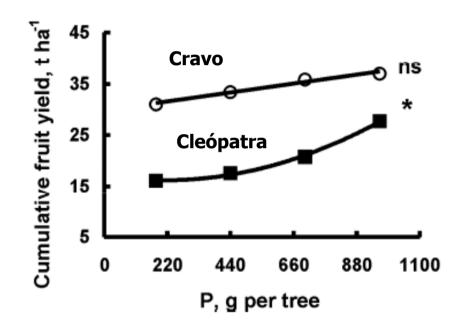
Fertilizante + água

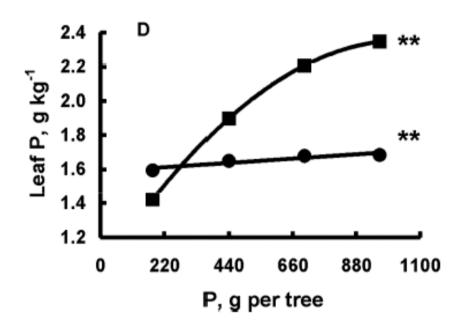
- Fertirrigação normalmente aumenta a eficiência de uso de nutrientes
 - Menor estresse por falta de água
 - Fertilizante localizado na zona de maior densidade radicular
 - Parcelamento


Eficiência e modo de aplicação: bananeira "Nanicão"

	Eficiência de uso de N e de K			
Nutriente	ente <u>com modo de aplicação</u>			
	Fertirrigação	Via solo		
	kg fruto/kg N ou de K ₂ O			
N	206	151		
K	180	132		

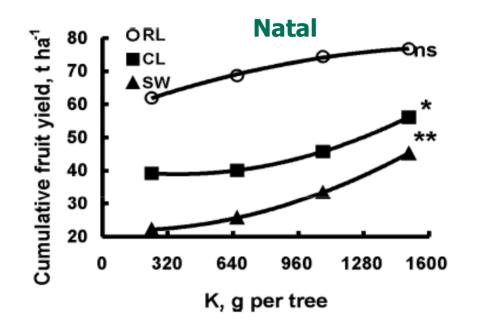
A eficiência de uso de N (doses de 140 a 420 kg/ha) e de K (doses de 160 a 480 kg/ha de K₂O) aumentou em aproximadamente 36 e 32%, respectivamente

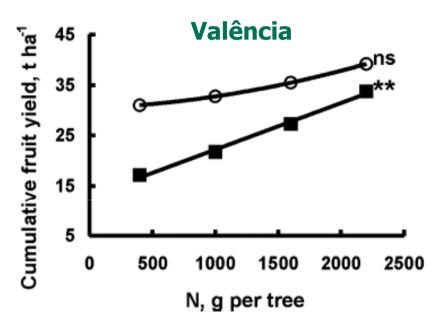



Diferenças entre variedades para o aproveitamento de nutrientes

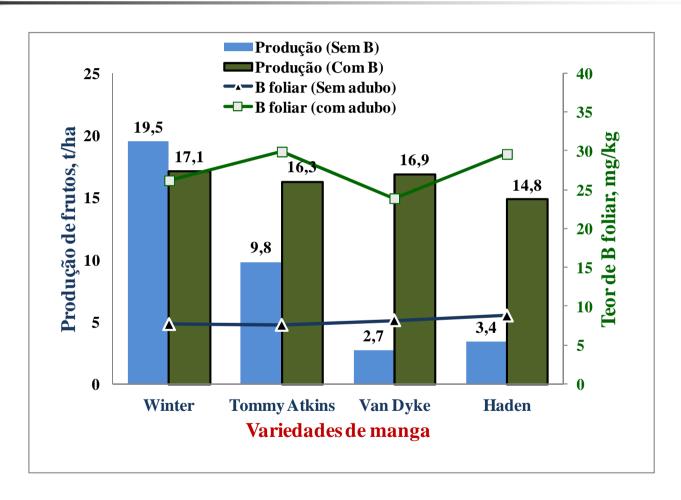
- Adubações devem ser adequadas a necessidades específicas
 - Ex: citros. Porta enxertos mais exigentes requerem adubação diferenciada
 - Limão cravo é mais eficiente que Cleópatra e Swingle

Exigências nutricionais em função do porta-enxerto




Resposta de laranja Valência a P: adubação de formação em Cleópatra requer mais P

Exigências nutricionais em função do porta-enxerto



Limão cravo (RL) é o porta-enxerto mais eficiente para N, P e K. Adubações de formação para **Cleópatra e Swingle** devem ser elevadas para aproveitar outras qualidades desses porta-enxertos

Diferenças para eficiência de uso de B em mangueiras

Absorção foliar de NH₃ volatilizada

Pomar de laranja Natal com 6 anos.

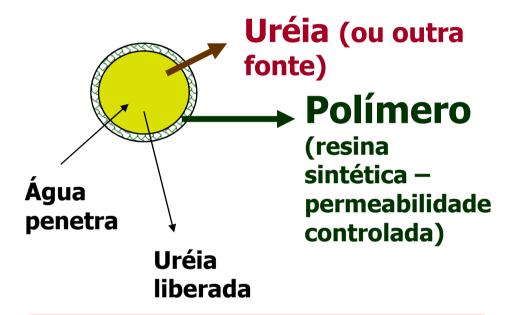
Espaçamento: 6,0 x 2,7 m

Adubo (UR) marcado com ¹⁵N, sem contato com o solo. Dose: ~80 kg ha⁻¹ de N

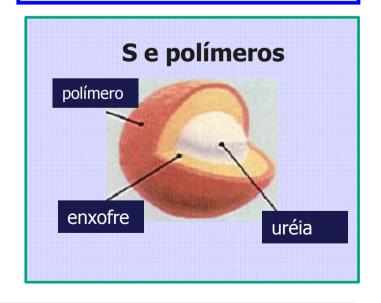
Árvores cortadas e analisadas após 21 dias

Absorção foliar: 3 a 7% da NH₃ volatilizada recuperada

Medidas para reduzir perdas de N: Fontes alternativas

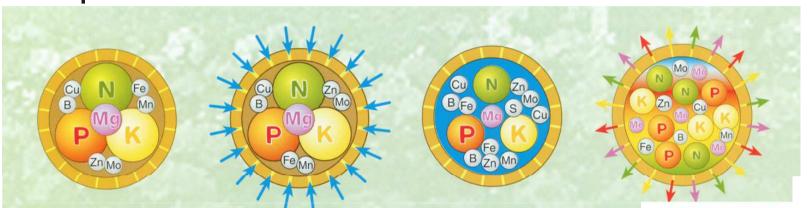

- "Fertilizantes de Eficiência Aumentada*"
 - A) Fertilizantes de liberação lenta ou controlada
 - Recobertos, encapsulados, insolúveis etc
 - B) Fertilizantes estabilizados
 - Contêm aditivos ou inibidores

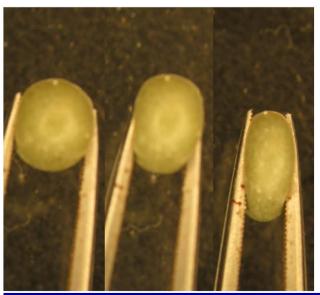
*Enhanced efficiency fertilizers (EEF)


Fertilizantes nitrogenados de solubilidade controlada — Coberturas com polímeros

Liberação é controlada pela composição ou espessura do recobrimento: Ex. 80% liberado em 30 dias, 90 dias etc

Vários produtos, com diferentes tecnologias de produção da cobertura


Osmocote; Meister Nutricote; Poly-S



Mecanismo de ação de FLL

- 1. Água penetra no grânulo pelos poros do polímero
- 2. Dissolve nutrientes = aumenta pressão osmótica
- 3. Solução sai por difusão

Liberação controlada de nutrientes em fertilizantes recobertos com polímeros

Temperatura média do solo	3 M	6 M	9 M	12 M	
	Tempo médio para liberação (meses)				
15 °C	4 a 5	6 a 7	9 a 10	13 a 14	
21 °C	3 a 4	5 a 6	8 a 9	11 a 12	
27 °C	2 a 3	4 a 5	7 a 8	10 a 11	

Prazo para liberação dos nutrientes controlado pelas características do material de cobertura e pela temperatura do solo

Fertilizantes de liberação lenta ou controlada:

- Muitos resultados positivos na literatura
 - Aumento da EUN
 - Dispensa parcelamentos
- Às vezes a liberação do N não é a pretendida: resultados desfavoráveis ou iguais às fontes solúveis
 - Falhas no recobrimento
 - Condições solo/clima não favorecem liberação/dissolução: liberação do N antes ou depois do pretendido

Relação de preços de fertilizantes LL/C

SCU – PCSCU	2:1
UF	3 a 5:1
Polímeros	4 a 8:1

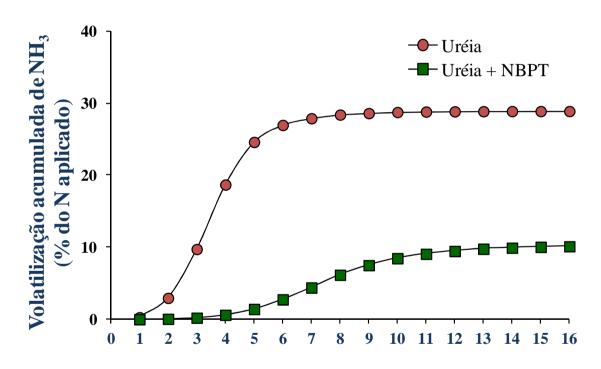
Custo do polímero: 10 a 30 vezes o custo do fertilizante

Indústrias no Japão, Israel e EUA trabalham para reduzir custo de fertilizantes LL/C Mercado pequeno mas em grande crescimento

LL/C: 0,19% do mercado do convencional (EUA ~1,1%)

China (2006/07): 1 Mt de capacidade (SCU/PCSCU)

Incluindo China: 0,47% do consumo de fertilizantes minerais


Fertilizantes Estabilizados

- Inibidores de nitrificação
- Inibidores de urease

Inibidores de urease

Dias após a aplicação dos fertilizantes

NBPT:

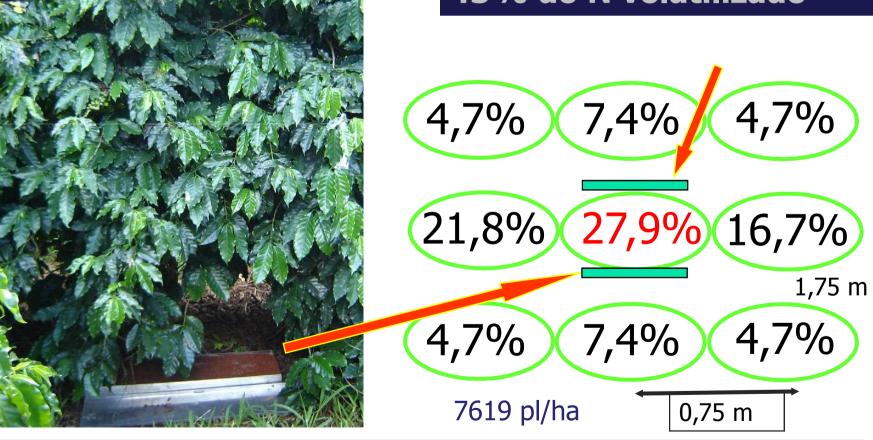
- O NBPT não elimina mas reduz as perdas de NH₃ permitindo o aumento da eficiência de uso da uréia
- Eficiência depende de condições ambientais
- Quanto maior o risco de perdas de NH₃, maior pode ser o benefício do uso do inibidor

Conclusões

- Aumentar a eficiência de uso de nutrientes tem benefícios econômicos e ambientais
- Há múltiplas estratégias para tal
 - Empregar estratégias conhecidas e comprovadas (4-C)
 - Cuidar da reação do solo (não só da superfície)
 - Levar em conta características de espécies e variedades
 - Quando economicamente viável, fazer uso de fertilizantes que ajudem a controlar perdas e aumentar a absorção de nutrientes pelas plantas

Muito obrigado

Heitor Cantarella cantarella@iac.sp.gov.br

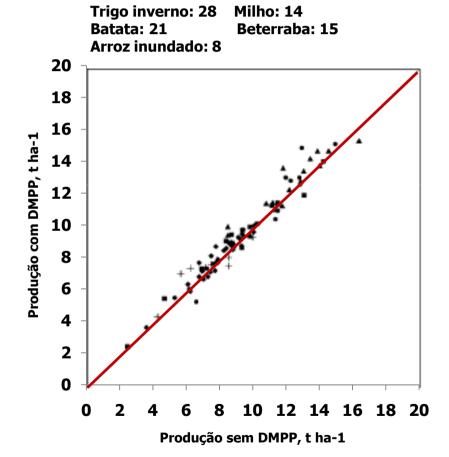

Absorção por cafeeiro de N volatilizado da uréia (15N)

Aplic: 70 kg N/ha

Volat: 58 kg

Absorção: 25 kg (43%)

INIBIDORES DE NITRIFICAÇÃO


$$NH_4^+ + 1,5 O_2^- \times NO_2^- + H_2O + 2H^+$$

 $NO_2^- + 0,5 O_2^- \times NO_3^-$

Muitos compostos testados

- Nitrapirina (2-cloro-6-(triclorometil) piridina)
 - Para fluidos
 - Relativo sucesso no mercado americano
- Dicianodiamida (DCD)
 - Bom efeito mas doses são relativamente altas
 - É também fertilizante de liberação lenta (65% N)
- DMPP (fosfato de 3,4-dimetil pirazole)
 - Molécula comercial recente
 - Mistura com fertilizantes sólidos
 - Bom potencial.

Inibidor de nitrificação (DMPP): 86 experimentos

Na maioria dos ensaios a produção com o inibidor foi mais elevada

Ganhos (t ha⁻¹):

Trigo: + 0,25

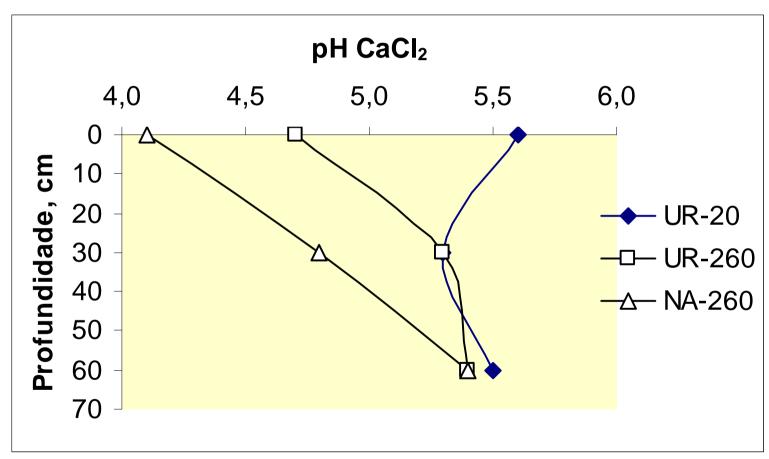
Milho: + 0,24 Batata: + 1,6

Beterraba: + 0,24

Arroz: +0,29

III Simpósio Nut Plantas - Jaboticabal

Inibidores de nitrificação: resumo


- Efeitos positivos em apenas parte dos experimentos
- Potencial em solos leves e com riscos de lixiviação
- Nem sempre são substitutos para bom manejo mas, oferecem flexibilidade para alternativas de manejo (antecipação de aplicação, redução de parcelamentos)
- Inibidores de nitrificação geralmente também reduzem emissão de N₂O — mas é questionável se isso pode promover o uso de tais produtos

Acidificação do solo após 5 anos:

pH na faixa adubada do pomar

