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Summary

 

It has only recently become apparent that the apoplast plays a major role in a
diverse range of processes, including intercellular signalling, plant–microbe interactions
and both water and nutrient transport. Broadly defined, the apoplast constitutes
all compartments beyond the plasmalemma – the interfibrillar and intermicellar
space of the cell walls, and the xylem, including its gas- and water-filled intercellular
space – extending to the rhizoplane and cuticle of the outer plant surface. The physico-
chemical properties of cell walls influence plant mineral nutrition, as nutrients do not
simply pass through the apoplast to the plasmalemma but can also be adsorbed
or fixed to cell-wall components. Here, current progress in understanding the signi-
ficance of the apoplast in plant mineral nutrition is reviewed. The contribution of
the root apoplast to short-distance transport and nutrient uptakes is examined
particularly in relation to Na

 

+

 

 toxicity and Al

 

3+

 

 tolerance. The review extends to
long-distance transport and the role of the apoplast as a habitat for microorganisms.
In the leaf, the apoplast might have benefits over the vacuole as a site for short-term
nutrient storage and solute exchange with the atmosphere.
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I. Introduction

 

When at the end of the 17th century Robert Hooke used a
self-made microscope to study plant tissues, his observations
led him to conclude that plants were made up of ‘little boxes’,
or ‘cells’ as he called them. Since he conducted his initial work
with dead plant material, such as cork, his cells consisted of
cell walls only. It is interesting to recall that the plant com-
partment, which today is called the apoplast, has actually
been known for a longer period of time than the symplast,
and that it attracted the interest of biologists for many years
before ‘the dead excrusion product of the living protoplast’
was forgotten, for almost three centuries. Cell walls were the
subject of scientific interest mainly as a resource for industrial
processing or in relation to animal or human health.

It was not before the mid 1800s that cell walls attracted
the interest of a broader group of plant scientist (Schindler,
1993). It soon became evident that the term cell wall may
be misleading since it is not appropriate to associate a highly
complex matrix consisting of cellulose, hemicellulose, pectins
and proteins (Sakurai & Nevins, 1993; Carpita 

 

et al.

 

, 1996)
that is highly flexible. By now we know that the chemical and
physical properties of cell walls are not fixed but depend on a
number of parameters including ontogeny (von Teichman & van
Nyk, 1993; Cheng & Huber, 1997; Sakurai & Nevins, 1997;
Steele 

 

et al.

 

, 1997), environmental parameters such as temperature
(Dawson 

 

et al.

 

, 1995; Klein 

 

et al.

 

, 1995; Siddiqui 

 

et al.

 

, 1996),
osmotic stress (Hirasawa 

 

et al.

 

, 1997; Wakabayashi 

 

et al.

 

, 1997),
light (Parvez 

 

et al.

 

, 1996; Cheng & Huber, 1997; Parvez

 

et al.

 

, 1997), heavy metal stress (Aidid & Okamoto, 1993;
Degenhardt & Gimmler, 2000), and nutrient supply (Tan
& Hogan, 1995; Findeklee 

 

et al.

 

, 1997; Hay 

 

et al.

 

, 1998).
This is why it was suggested to replace the term ‘cell wall’ with
the more precise term ‘extracellular matrix’ (Schindler, 1993).
The more we learned about the extracellular matrix the more
it became apparent that only few processes during growth and
development of a plant do not involve cell walls (Sakurai, 1998).

It was the botanist Ernst Münch (Münch, 1930) who separ-
ated the plant into two principal compartments the ‘dead’
apoplast and the ‘living’ symplast. While Münch thought
water and solute transport were the sole function of this new
plant compartment, we know today that apoplastic functions
are much more numerous. It has been suggested to consider
‘the apoplast as the internal physiological environment of
plant bodies’ in which maintenance of homeostasis is essen-
tial (Sakurai, 1998). In this context it appears worth while
to mention that in many cases environmental stimuli are not
received directly by the cell but via changes within this internal
environment (Hoson, 1998). As an example, which will not
be considered any further, the response to phytohormones
such as auxins (Tsurusaki 

 

et al.

 

, 1997) or pathogen attack
(Kiba 

 

et al.

 

, 1997; Olivares 

 

et al.

 

, 1997) may be taken.
From the viewpoint of plant mineral nutrition the apoplast

appears to be of interest in many respects: nutrients do not

simply pass through the apoplast on their way to the plasma-
lemma, but they may also be adsorbed or fixed to cell wall
components which may be of significance for both nutrient
acquisition (Thornton & Macklon, 1989; Ae & Otani,
1997) and tolerance against toxicity (Horst, 1995). Micro-
organisms colonize this compartment and may contribute
directly to the nutrition of higher plants, for example by their
ability to fix di-nitrogen (Kaile 

 

et al.

 

, 1991).
These numerous functions require a broader definition

than those given by Münch: according to present under-
standing all compartments beyond the plasmalemma constitute
the apoplast (i.e. the interfibrillar and intermicellar space of
the cell walls, the xylem as well as the gas and water filled
intercellular space in its entirety). The border of the apoplast is
formed by the outer surfaces of plants (i.e. the rhizoplane
and the cuticle). Solutes or microorganisms adhering to these
surfaces are not, however, apoplastic.

It is the objective of this article to review the processes
and properties of the apoplast as far as they contribute to the
mineral nutrition of plants. Examples will be taken from work
being conducted in the scope of the priority research project
of the German Research Association – ‘The apoplast of higher
plants: compartment for storage, transport and reactions’
and especially from our own work.

 

II. The properties of the apoplast and 
its implication for solute movement

 

Although this is not a review on cell wall biochemistry it
appears appropriate to consider briefly the physico-chemical
properties of cell walls in order to consider implications for
plant mineral nutrition (Brett & Waldron, 1996). Cell walls
consist of a series of layers. The earliest layer is deposited at
cell division and since the subsequent wall layers are laid
down between the plasma lemma and the earliest layer, the
oldest cell wall is found were the cell walls adjoins, the latest
wall layer is found nearest to the plasma lemma. Three clear-
cut layers differing in both chemical and physical properties
can be distinguished: the middle lamella, the primary cell
wall and the secondary cell wall.

 

1. The middle lamella 

 

The middle lamella of dicot plants, and to a lesser degree
of monocot, basically consist of pectins with different degree
of methylation. Pectins are a very heterogeneous group,
homogalacturonans and rhamnogalacturonans being just two
prominent representatives. 

 

2. The primary wall

 

The primary wall consists of a network of cellulose of a
relatively low degree of polymerization, hemicellulose (xylans
in monocot, xyloglucans in dicot) and glycoproteins. The
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latter may represent between 5 and 10% of the cell wall
dry weight (Cassab & Varner, 1988) demonstrating that cell
walls are important sites for metabolism (VI The apoplast
leaves). 

 

3. The secondary cell wall 

 

The secondary cell wall consists, to a higher degree than the
primary wall, of cellulose of relatively high degree of poly-
merization, hemicellulose and protein content is considerably
lower than is the case in the primary cell wall (Brett &
Waldron, 1996). In both primary and secondary cell walls
the cellulose/hemicellulose network consists of interfibrillar
and intermicellar spaces which differ in size between 3.5
and 5 nm (Carpita 

 

et al.

 

, 1979; Gogarten, 1988; Shepherd
& Gootwin, 1989; Chesson 

 

et al.

 

, 1997), and thus does not
represent a major diffusion barrier even for larger molecules.
However, due to friction and tortuosity, transport velocity
may be hampered. For high molecular weight solutes such as
fulvic acids, chelators or viruses, pore size prevents transport.
Cell wall porosity may change with ontogeny (O’Driscoll

 

et al.

 

, 1993; Titel 

 

et al.

 

, 1997) and cell differentiation (Lynch
& Staehelin, 1995). The influence of environmental factors
such as toxic metals remains an open question.

The hydraulic conductivity of cell walls is rather high and
exceeds that of the plasmalemma by far. However, due to the
larger cross-sectional surface of the symplastic pathway, the
relative contribution of both components to water transport
may be comparable; although in certain plant tissues the
contribution of the apoplast appears to be rather low (Steudle
& Frensch, 1996; Schulz 

 

et al.

 

, 1997; Steudle & Peterson,
1998). The presence of aquaporins (Steudle, 1997) may
increase the conductivity of the plasmalemma and thus the
relative significance of the symplastic or trans root pathway.
This has been convincingly demonstrated by Kaldenhoff

 

et al

 

. (1998). The authors decreased hydraulic conductivity
of 

 

Arabidopsis thaliana

 

 roots by a factor of three by anti-
sense expression of aquaporins. This was compensated for by
the plant by increasing the size of the root system by a factor
of five allowing the plant to cope with the reduced water
permeability of the plasmalemma.

Since cell walls are normally found to have negative
charges due to the predominance of free carboxyl groups of
galacturonic acids of the pectins in the middle lamella and
primary wall, movement of ions in cell walls is characterized
by electrostatic interactions leading to an accumulation of
cations in the apparent free space (AFS) in a nonmetabolic
step (Marschner, 1995). (The term apparent free space has
been chosen for the apoplastic space in order to stress the
point that ion movement is not free but dependent on its
interaction with the undiffusable anions of the cell wall.)
The current view of ion movement in cell walls is highly
influenced by the early work of Hope & Stevens (Hoson,
1987) as well as by that of Briggs & Robertson (1957).

According to these authors the AFS is divided into the Donnan
Free Space (DFS) and the Water Free Space (WFS). The
Donnan Free Space is that part of the AFS where ion dis-
tribution is characterized by the presence of undiffusible
anions, in the Water Free Space, however, ion movment is not
restricted by electrical charges. The relative size of DFS : WFS
is 20 : 80). Both cation exchange capacity (Demarty 

 

et al.

 

,
1978; Bush & McColl, 1987) and electrical potential (Stout
& Griffing, 1993) have been used to describe the physical
properties of the DFS. However, we now know that rigid
separation between the DFS and the WFS may be an over-
simplification, because it is not possible to make any clear
spatial differentiation between the two compartments (Platt-
Aloia 

 

et al.

 

, 1980; Starrach & Mayer, 1986) and the extent
of the DFS is not fixed (Ritchie & Larkum, 1982). Neverthe-
less, the model has proved to be helpful especially in the
understanding of uptake phenomena such as the apparent
synergism between Ca

 

2+

 

 and H

 

2

 

PO

 

−

 

4

 

 

 

(Franklin, 1969) or differ-
ences in the uptake of Zn

 

2+

 

 in ionic or chelated form (Marschner,
1995).

The amount of nondiffusible cell wall anions are normally
quantified by the cation exchange capacity (CEC) which is
by far higher in dicot than in monocot species (Keller &
Deuel, 1957). In most cases the CEC is determined with
isolated cell wall material. In this context it appears note-
worthy to state that due to spatial limitations only part of
the exchange sites are accessible to cations leading to a much
lower CEC 

 

in vivo

 

 (Marschner, 1995). The CEC of a plant
tissue is not constant but is highly responsive to environ-
mental factors. For example, salinity generally decrease the
CEC (Bigot & Binet, 1986) which is regulated by enzymes
such as pectin methylesterase (PME). This enzyme which
demethylates pectins, generating pectic acid, and thus increas-
ing the CEC may be affected by apoplastic polyamines
(Charnay 

 

et al.

 

, 1992; Berta 

 

et al.

 

, 1997; Messiaen 

 

et al.

 

, 1997)
and thus by the N nutrition of the plants (Gerendás 

 

et al.

 

,
1993). Manipulation of PME activity by means of molecular
technology leads to changes in shoot growth rate as well as
cation binding capacity (Pilling 

 

et al

 

., 2000). Relatively little
is known on distribution and transport of PME in cell walls.
However, the frequently observed accumulation of Ca

 

2+

 

 in
the middle lamella of the junction zone (P. van Cutsem, pers.
comm.) may be taken as an indication for a preferential trans-
port of PME in this large intercellular spaces. Since the pH
for H

 

+

 

 of the cell wall is in the range of 4.3 (Baydoun & Brett,
1988) or lower (Richter & Dainty, 1989), a decreasing
apoplastic pH may reduce the CEC (Allan & Jarrel, 1989).
This is however, unlikely to occur under physiological con-
ditions because apoplastic pH is highly regulated. Examples
for this process in the leaf apoplast will be considered later
(for the root apoplast see Felle, 1998).

The undiffusible anions have a strong influence on ion
movement. For example, the existence of electrical bilayers
may restrict movement of anions to the larger interfibrillar
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spaces (Clarkson, 1991) while the velocity of cation move-
ment (mainly Ca

 

2+

 

) is reduced by interaction with the free
carboxyl groups (Marschner, 1995).

 

III. The root apoplast – nutrient uptake and 
short-distance transport

 

Due to the negative charges in the root cell wall we observe
an accumulation of cations and a repulsion of anions in the
root apoplast (Clarkson, 1993). This is particularly clear for
di- and polyvalent ions (Haynes, 1980). Although accumula-
tion in the root apoplast is not an essential step in nutrient
absorption, it does explain certain well-known phenomena
such as differences in K:Ca ratio among plant species (Haynes,
1980). A very good example is also the preferential uptake of
metals such as Zn and Cu in ionic over the chelated forms
(Marschner, 1995). In the latter case however, one can not
exclude that restriction of the relatively large chelate molecules
by the cell wall pores is an important factor explaining the
results.

A factor of little consideration is the property of water
bound to gels such as pectins. Recent studies determining
water relaxation in a model system however, suggest highly
structured properties, quite different from those of free water
(Esch 

 

et al.

 

, 1999). Implications for the activity of enzymes
and dyes frequently used in studies on ion relations in cell
walls are far from being understood.

Binding of certain metal cations such as Cu (Thornton &
Macklon, 1989), Mn (Bacic 

 

et al.

 

, 1993), B (Matoh 

 

et al.

 

,
1997), Zn (Zhang 

 

et al.

 

, 1991b), or Fe (Zhang 

 

et al.

 

, 1991a)
to cell wall components may be quite specific. Cu, for example,
may be bound in nonionic form to nitrogen containing groups
of cell wall proteins (Harrison 

 

et al.

 

, 1979; Van Cutsem &
Gillet, 1982) while B is bound to diols and polyols, particu-
larly 

 

cis

 

-diols (Goldbach, 1997). In this context rhamno-
galacturonan II is of special significance (O’Neill 

 

et al.

 

, 1996;
Kobayashi 

 

et al.

 

, 1996). This binding leads to an accumula-
tion of the relevant nutrient in the cell wall and it is tempting
to speculate about the significance of this accumulation in
the root apoplast for genotypic difference in mineral nutrient
efficiency. A prominent example was given by Longnecker
& Welch (1990) who argued that large amounts of apoplastic
Fe in soybean roots contribute to Fe-efficiency. However, a
critical evaluation showed that this Fe was basically adhering to
the outer surface of the epidermis probably in particulate
form (Fig. 1) and did not contribute significantly to the
nutrition of the plant (Strasser 

 

et al.

 

, 1999). This emphas-
izes the necessity to restrict the extension of the apoplast by
the definition given in I Introduction.

An involvement of cell wall components of roots in the
acquisition of sparingly soluble Fe phosphates in low fertility
soils has recently been demonstrated for groundnut (Ae

 

et al.

 

, 1996). It has been suggested by the authors that this
effect is due to a binding of Fe to root cell wall components

and thus releasing phosphate. This view is supported by the
fact that saturating the root before the test with Fe diminishes
the phosphate mobilizing activity (PMA). This effect is
reversible since removal of the Fe from the cell wall restores
the PMA (Fig. 2). The precise mechanism is not yet understood
(Ae & Otani, 1997). Nevertheless, this opens a new view on
how plants may interact with the soil and influence nutrient
availability within the vicinity of the apoplast.

Unstirred layers (USL) are defined as boundary layers of
either liquids or gases in the vicinity of transport barriers. In
these layers a complete mixing is not possible and, thus,
concentration gradients are observed. USL are of principal
importance for all transport processes across barriers such as
the apoplast or the plasmalemma. As a consequence, it is not
only the resistance of the barrier itself which determines trans-
port rate, but also the diffusion across the USL (Zimmermann

 

et al.

 

, 1992). Transport resistance across USLs depends on
the mobility of each solute as well as on the thickness of the
USL. Since the thickness of USLs in the apoplast can be quite
substantial (Thompson & Dietschy, 1980; Preston, 1982), it
can be concluded that USLs are an important factor in trans-
port processes in the apoplast.

As a consequence of the cell wall properties of roots, ionic
relations in the vicinity of the plasmalemma can vary consider-
ably from those in the rhizosphere (Franklin, 1969; Grignon
& Sentenac, 1991). Such phenomena are of fundamental
importance for the understanding of processes such as ionic
antagonisms (Borst-Pauwels & Severens, 1984; Barts & Borst-
Pauwels, 1985; Collier & O’Donnell, 1997) or apparent
synergisms such as those between Ca

 

2+

 

 and H

 

2

 

PO

 

4
–

 

 (Franklin,
1969). However, ionic gradients can arise not only as a
result of apoplastic properties or ion uptake (Kochian &
Lucas, 1982; Henriksen 

 

et al.

 

, 1990). Ionic fluxes into the
apoplast may also be the result of efflux processes or of the
activities of ionogenic pumps. For example, gradients may
be formed in the vicinity of tissue with particularly high H

 

+

 

ATPase activity (Canny, 1993) or when Ca

 

2+

 

 is desorbed as
a result of an increase in free H

 

+

 

 concentration (Cleland

 

et al.

 

, 1990).
In the apoplast of roots the Casparian band represents the

major diffusion barrier (Sanderson, 1983). Although it is
generally considered to be completely impermeable to water
and ions, recent results (Steudle 

 

et al.

 

, 1993; Steudle, 1994)
do suggest a certain degree of permeability. Depending on
species and age the endodermis and exodermis contain
cutin and suberin at different quantities (Schreiber, 1996;
Zeier & Schreiber, 1998). Chemical composition of the
Casperian band changes with ontogeny (Zeier & Schreiber,
1998) as well as with environment (Schreiber 

 

et al.

 

, 1999).
Adverse ionic relations, such as salt stress (Reinhardt & Rost,
1995), accelerate the formation of the endodermis which
is understandable taking the significance of the Casparian
band to prevent bypass flow into account. This significance
is further emphasized by the observation that salt tolerant
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plant species in many cases reveal a thicker Casparian band
than less tolerant ones (Plojakoff-Mayber, 1975). Schreiber

 

et al

 

. (1999) have described the chemical analysis of the cell
walls of the endodermis. 

In most plant species the hypodermis is converted into an
exodermis – an outer Casparian band (Perumalla & Peterson,
1986; Peterson & Perumalla, 1990; Damus 

 

et al.

 

, 1997) is
formed which in many cases contain suberin deposition
(Enstone & Peterson, 1997). The formation of the exodermis

occurs later than that of the endodermis and depends largely
on growing conditions (Barrowclough & Peterson, 1994)
such as salinity stress (Reinhardt & Rost, 1995). The signi-
ficance of the exodermis for water and ion uptake is discussed
in the literature with some degree of controversy (Ferguson
& Clarkson, 1976; Clarkson 

 

et al.

 

, 1987; Peterson, 1988)
and apparently depends largely on the ion under considera-
tion (Enstone & Peterson, 1992). However, it was recently
demonstrated that for nutrients such as K

 

+

 

 it represents a

Fig. 1 Localization of Fe by Proton-Induced X-ray Emission in a cross section of root (7 µm thick) of a barley root grown in contact with soil. 
Soil was removed thoroughly by washing with water. Note the localization of Fe in the epidermis. Courtesy of Strasser et al., 1999.
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significant diffusion barrier (Gierth 

 

et al.

 

, 1999) (Fig. 3).
Prevention of dehydration in the case of more negative soil
water potentials (Stasovsky & Peterson, 1991; Kamula 

 

et al.

 

,
1994), control of solute exchange processes between symbiotic
partners (Ashford 

 

et al.

 

, 1989), as well as resistance against
pathogen attack (Kamula 

 

et al.

 

, 1995) are presently considered
to be further functions. The exodermis does not form a con-
tinuous apoplastic barrier. Wounding, induced by lateral
root development (Enstone & Peterson, 1997) together with
the existence of passage cells (Peterson & Enstone, 1996),
suggests that nutrients may diffuse into the AFS which
occupies approx. 5% of the root volume (Shone & Flood,
1985) in spite of the existence of the exodermis. However,
the significance of ions in the AFS for nutrient uptake must
not be overestimated. The beneficial effect of an increase in
absorbing surface area would be especially important for
nutrients typically present in low concentration in the soil
solution such as phosphorus or potassium. However, due to
the uptake activity of epidermal cells including root hairs,
concentration of the ions in the rhizosphere is often in the
range of C

 

min

 

, where influx is equal to efflux (Jungk 

 

et al.

 

,
1982). Thus, the contribution of the AFS to nutrition of the
plant with these nutrients is expected to be rather low.

The root apoplast is the plant compartment that first
encounters adverse soil chemical conditions such as high Na

 

+

 

or high Al

 

3+

 

 concentrations. As shall be considered for Al

 

3+

 

first, conditions in the root apoplast are determining for the
response of the plant. As has been demonstrated for numer-
ous plant species cessation of root growth is the first detect-
able symptom of for Al

 

3+

 

 toxicity (Horst & Goppel, 1986;
Blamey 

 

et al.

 

, 1993a). Pre-treatment of roots with silicon

reduces the symptoms of aluminium toxicity (Corrales 

 

et al.

 

,
1997). The interaction of Al

 

3+

 

 with cell wall components
such as the pectin matrix (Clarkson, 1967; Blamey 

 

et al.

 

,
1993b; Van 

 

et al.

 

, 1994) could explain the phenomena of
growth cessation. Pectins have great influence on cell wall
properties such as hydraulic conductivity and, in connection
with extensin, also on wall plasticity (Wilson & Fry, 1986).
Recent findings demonstrating a correlation between pectin
methylation and Al

 

3+

 

 tolerance support such a view (Schmohl
& Horst, 1999). The immediate reduction of K

 

+

 

 efflux (Horst

 

et al.

 

, 1992) as well as Ca

 

2+

 

 influx (Huang 

 

et al.

 

, 1992; Rengel,
1992a,b) may be interpreted as being the result of an inter-
action of the trivalent cation with the plasmalemma (Horst,
1995; Kochian, 1995). There is evidence that Al

 

3+

 

 causes
disturbance of cytoplasmic Ca

 

2+

 

 homeostasis, for example, in
root hairs ( Jones 

 

et al.

 

, 1998). However, since physiological
processes such as cytoplasmic streaming, which are extremely
sensitive to any change in Ca

 

2+

 

 homeostasis (Plieth 

 

et al.

 

, 1999),
remain undisturbed by external Al

 

3+

 

 supply (Sattelmacher 

 

et al.

 

,
1993), the suggested casuality (Rengel, 1992a,b; Lindberg &
Strid, 1997) is not quite convincing (Kinraide 

 

et al.

 

, 1994;
Ryan 

 

et al.

 

, 1994). Especially in the light of new findings
suggesting that Al

 

3+

 

 rather prevents an increase of cytoplasmic
Ca

 

2+

 

 brought about by high external H

 

+

 

 (Plieth 

 

et al.

 

, 1999).
The hypothesis that apoplastic processes are involved in

Al

 

3+

 

 tolerance is emphasized by recent data suggesting that
release of chelating substances such as organic acids into the
apoplast is causally related with Al tolerance (Larsen 

 

et al.

 

,
1998). This could also explain earlier findings demonstrat-
ing that form of N supply (NO

 

3

 

−

 

 vs NH

 

4
+

 

) reveals a strong
influence upon Al tolerance (Grauer & Horst, 1990). Recent

Fig. 2 Influence of FeCl3 pre-treatment 
of groundnut cell wall on its phosphate 
mobilizing activity (PMA). Cell wall 
material, from which Fe3+ has been 
removed by washing with 0.5 M HCl, 
was incubated in a FeCl3 solution for 
30 min, carefully washed with deionized 
water and dried. Thereafter samples were 
divided: from one half Fe3+ was removed 
by washing with 0.5 M HCl before 
testing for PMA (open circles). The other 
half was used immediately for the PMA 
test (closed circles).
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findings demonstrate that Al3+ sensitivity is restricted to the
distal part of the transition zone (Sivaguru & Horst, 1998;
Mayandi et al., 1999). Whether this is due to apoplastic pH
gradients in the root tip region (Felle, 1998) or due to hampered
IAA transport in cell walls (Kollmeier et al., 1999) can presently
not be judged on. The involvement of cell walls in the process
of detoxification of Al species has been demonstrated for dif-
ferent plant species such as wheat (Maison & Bertsch, 1997).

Apoplastic processes are also involved in Na+ toxicity
(Wang et al., 1997; Volkmar et al., 1998). Although the

mechanism is not fully understood an involvement of cell
wall glycoproteins (Sun et al., 1997) is presently debated.
Additionally, in the case of Na+ sensitive plants a consider-
able part of the Na+ detected in the xylem has entered the
stele apoplastically by the so-called bypass flow (active trans-
port processes are not involved) (Steudle et al., 1987; Yeo et al.,
1987; Frensch & Steudle, 1989). Interestingly, the activity
of this process appears to be under genetic control (Garcia
et al., 1997). A displacement of Ca2+ from the boundary layer
plasmalemma/apoplast is also involved in Na+ toxicity (Lynch

Fig. 3 Secondary ion mass spectroscopy (SIMS) images showing the distribution of 39K+ and 85Rb+ in a freeze-dried cryosection of a barley 
root. A droplet of a 60-mol m−3 RbCl solution was added to the basis of a nodal root of an intact transpiring plant 120 s prior to freezing the 
plant with liquid propane. (a) SIMS mapping of 39K+ on a root cross section, imaging the cell contents of the cortex and the stele. Note that 
39K+ is absent from the surface adhering test solution, the cell walls and the xylem vessels in the stele. (b) The applied 85Rb+ from the test 
solution exceptionally appears on the root surface but neither in the apoplast nor in the symlast of the root cortex and the stele, respectively. 
(c) Summarized SIMS images of both 39K+ plus 85Rb+ to show the total extent of the analysed cryosection. (d) Summarized SIMS images as in 
(c): The isotope distribution map of 39K+ was framed by a green line and of 85Rb+ by a light blue line. Courtesy of R. Stelzer.
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& Läuchli, 1985; Rengel, 1992c; Yermiyahu et al., 1997). This
aspect will be further considered in the section entitled ‘Ion
relations in the leaf apoplast and sympterns of deficiency,
and toxicity symptoms’ (VI.5).

IV. The apoplast as a compartment for 
long-distance transport

Uptake from the soil solution into the root symplast and sub-
sequent release into the xylem apoplast are two distinct pro-
cesses (Pitman, 1972; Poirier et al., 1991; Engels & Marschner,
1992). Restricted nutrient absorption by the root system
may be due to either process (Engels & Marschner, 1992) –
reduced activity of the uptake system into the symplast and
reduced xylem loading. The precise implication for regulation
of ion uptake rate is not yet fully understood but it is tempting
to speculate that nutrient cycling (in this section) regulates
ion uptake via the process of xylem loading (de Boer et al.,
1997; White, 1997) possibly by modulation of G-proteins
(Wegner & de Boer, 1997b), while exogenous factors such
as temperature or external ion concentration influence the
influx into the root symplast.

Solute transport into the xylem of roots involves flux from
the symplast into the apoplast (Läuchli, 1976). In earlier
work it was thought that xylem loading was mediated by a
passive leakage of solutes (Crafts & Broyer, 1938) but the
involvement of metabolism in the process of xylem loading
has later been demonstrated (DeBoer et al., 1983). These
physiological results were accompanied by cytological studies
showing the existence of transfer cells in the paratracheal
parenchyma (Kramer et al., 1977). Contrary to findings
suggesting an active transport mechanism for xylem loading
(DeBoer et al., 1983; Mizuno et al., 1985) more recent data
demonstrate a thermodynamic passive transport by ion
channels (Wegner & Raschke, 1994). By now both inward
(Wegner & de Boer, 1997a) and outward (Wegner et al.,
1997b) rectifying channels have been detected in this tissue
contributing further to our understanding of xylem load-
ing. The driving force is generated by H+-ATPase which is
expressed particularly in the paratracheal parenchyma cells
( Jahn et al., 1998).

Composition of the xylem sap is highly variable and
depends on plant species, age (Prima & Botton, 1998), time
of day (Schurr & Schulze, 1995; Urrestarazu et al., 1995),
location of sampling (Berger et al., 1994), nutritional status,
rooting medium (Förster & Jeschke, 1993), and last but not
least on nutrient cycling within the plant (White, 1997).
Mineral nutrient supply reveals a strong influence on xylem
sap composition. As a rule, there exists a positive correlation
between ion concentration in the external solution and in
the xylem sap. Contrary to variation in rhizosphere pH the
effect of nutrient uptake on xylem sap pH is not well studied
and understood. While NH4

+ nutrition always leads to an
acidification of the rhizosphere due to a predominant uptake

of cations (Marschner et al., 1986) considerable discrepancies
were found in the effect on xylem sap pH. In some studies
an acidification (Allen & Raven, 1987) was observed, while
others revealed no effect of N form at all (Zornoza &
Carpena, 1992). These differences may be due to several factors
including composition of amino acids, however further studies
are required to elucidate this important aspect. In spite of the
high puffering capacity of xylem vessel walls for H+ (Mizuno
& Katou, 1991), and the strong pH regulation which can be
demonstrated impressively by perfusion experiments (Clarkson
& Hanson, 1986), substantial variations in xylem sap pH has
been observed (Urrestarazu et al., 1995; Schurr & Schulze,
1996). These are due to changes in ion composition, and
specifically selective ion transport into or out of the xylem.
According to the strong ion difference (SID) concept
which has recently been adapted to plants in general, and
xylem sap in particular (Gerendás & Schurr, 1999) selective
removal of K+ decreases [SID] while selective removal of
NO3

– has the opposite effect. A decrease in [SID] leads to an
increase in H+ while an increase in [SID] decreases H+ con-
centration. In this context it can be stated that in many cases
pH in the xylem sap decreases in acropetal direction (Schill
et al., 1996). In general, an inverse relation between solute
concentration and xylem flow rate is observed (Schurr &
Schulze, 1995; Liang et al., 1997). This is why data on the
composition of xylem sap based on xylem pressure exudates
has to be considered with some precautions.

Cation exchange capacity of xylem cell walls is rather
high and has been estimated to be approx. 1000 mol m−3

for tomato (Wolterbeek, 1987). Interactions of cations with
the nondiffusible anions lead to a separation of ion transport
from water flow. The transport of cations may be compared
with that in a cation exchange resin, while water is trans-
ported by mass flow (Wolterbeek, 1987; Marschner, 1995).
The degree of retardation of ion translocation depends on
the valence of the cation (Ca2+ > K+), its own activity and
surface charge, the activity of competing cations (Wolterbeek,
1987), the charge density of the nondiffusible anions, and
the pH of the xylem sap (Wolterbeek, 1987). Consequently,
the transport rate of di- or trivalent cations is enhanced
significantly by complexation of the cation (Clark et al.,
1986). Cations may be complexed by organic acids (Senden
et al., 1994; Yang et al., 1997), amino acids, or peptides
(Mullins et al., 1986; Senden et al., 1994; Stephan et al.,
1996). It should be stressed that cation and anion transport
are always linked to each other. Thus, if cation transport
is enhanced by complexing molecules this also applies to
anions.

It is often overseen that considerable amounts of organic
compounds are transported in the xylem (Schneider et al.,
1994; Prima & Botton, 1998). Their significance is not,
however, restricted to ion transport. High sugar concentra-
tions in the winter (Schill et al., 1996) or in the spring (Sauter,
1988; Ding & Xi, 1993) of perennial plant species or in maize
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after silking (Canny & McCully, 1988; Engels et al., 1994)
may be taken as examples. It is by now well established that
sugars in the xylem may contribute significantly to the osmotic
pressure gradient (Pomper & Breen, 1995) and hence to
long-distance transport. At least part of the organics have
probably been passively leaked into the xylem. Numerous
living late metaxylem vessels have been shown to exist even
at a relatively large distance from the root tip (Wenzel et al.,
1989). At maturation the solute of the cytosol and the vacu-
ole are released into the xylem. By this process up to 10% of
shoot potassium demand may be released into the xylem by
leakage (McCully et al., 1987). The significance of this pro-
cess for other nutrients such as Ca2+ is still obscure. But it
should at least be mentioned that the mechanism by which
high Ca2+ fluxes into the xylem at low cytoplasmic Ca2+

concentrations is still not understood.
Apoplastic phytohormones, mainly IAA, ABA and cyto-

kinins are another important example for transport of
organics in the xylem (Hartung et al., 1992). It has been
demonstrated that at least for IAA the apoplast is involved in
synthesis (Tsurusaki et al., 1997) and signal reception (Sakurai,
1998). While for ABA the significance of the apoplast is
restricted to transport (Freundl et al., 1998). There are several
ways in which apoplastic phytohormones may affect ion
absorption (Blatt & Thiel, 1993) and especially long distance
transport in the xylem and, thus, the nutrition of plants: by
mediating activity of ion channels (Bottger & Hilgendorf,
1988; Marten et al., 1991; Blatt & Thiel, 1993; Wegner et al.,
1997a), by affecting CEC (Marschner & Ossenberg-Neuhaus,
1977), or by altering stomatal resistance (MacRobbie, 1995).
Interestingly, the involvement of apoplastic anions such as
malate or Cl− (Hedrich & Marten, 1993) as well as cations,
mainly Ca2+ (Atkinson et al., 1990) in the regulation of ion
channels in guard cells was demonstrated. Therefore, these ions
may affect apoplastic transport processes in the xylem by
regulating stomatal resistance.

Solutes transported in the xylem into the shoot do not
necessarily reflect root uptake since a substantial part may have
been redistributed via the phloem from the shoot to the
root. This nutrient cycling is of particular importance for
charge balance, especially in nitrate-fed plants (Gouia et al.,
1994; Marschner et al., 1996, 1997), for compensation of
short-term variations in root activity (Cooper & Clarkson,
1989) as well as for the osmotic potential required to maintain
root pressure. Nutrient cycling is also of significance for
regulation of nutrient uptake rate through the root system
(Engels & Marschner, 1992; Herschbach & Rennenberg,
1994; Schneider et al., 1994; Gebler et al., 1999). Depending
on the plant species and the nutritional situation, up to 60%
of the nitrogen (Cooper & Clarkson, 1989), 30% of the
sulphur (Larsson et al., 1991), and 80% of the potassium
(Jeschke & Pate, 1991b) found in the xylem may be alloc-
ated to the cycled fraction. Exogenous factors such as salt
stress may reduce these figures significantly ( Jeschke & Wolf,

1985; Jeschke et al., 1992). There is good evidence that not
only solutes but also the transport medium, water itself, may
be cycled within the plant. Depending on the relative
humidity of the ambient air up to 30% of the xylem water
may have been re-translocated from the shoot to the root via
the phloem (Tanner & Beevers, 1990).

Parenchyma cells, the so-called paratracheal parenchyma,
surround the xylem elements. Due to absorption and/or release
of solutes from or into the xylem, composition of the xylem
sap may vary with increasing distance of transport (Sauter &
van Cleve, 1992; Berger et al., 1994). The absorption may
be transient or permanent. While the former represents a
storage process the latter is considered as detoxification
(Marschner, 1995). Absorption and release may occur simul-
taneously. This is why, with certain plant species other than
legumes, a decrease in NO3-N and an increase in amino
acid concentration in the xylem sap may be observed with
increasing transport distance. This is due to the absorption
of NO3-N and a release of reduced nitrogen compounds
(Pate et al., 1990). In this context it should not be forgotten
that transfer cells present in the paratracheal parenchyma
may also mediate the exchange of solutes between xylem
and phloem ( Jeschke & Pate, 1991a). The significance of
this process especially for nitrogenous compounds is often
underestimated (van Bel, 1990). The combination of these
processes – absorption from the xylem, release into the
xylem and transfer into the phloem – may lead to strong
concentration gradients in the xylem sap (higher in the base
and lower in the apical region (Berger et al., 1994)). This is
often correlated with changes of the xylem sap pH (Schill
et al., 1996).

V. The apoplast – habitat for microorganisms

Although the presence of microorganisms inside healthy
plant tissue has been known of since the beginning of this
century, at least (Perotti, 1926), and despite numerous
reports on indigenous endophytic bacteria in various plant
tissues including tubers, shoots (Fig. 4), roots and fruits (for
review see Hallmann et al., 1997), it was mainly considered
as the result of insufficient surface sterilization. It is only
recently that it has been demonstrated that nonpathogenic
bacterial endophytes may stimulate plant growth by increasing
resistance to abiotic (Hallmann et al., 1997) and biotic stress
(Pleban et al., 1995), as well as by contributing to the nutrition
of its host (Hecht-Buchholz, 1998). With the availability of
molecular methods to detect endophytes in plant sap (Reinhold-
Hurek et al., 1998) or visualize them even on a tissue basis
(Katupitiya et al., 1995) new powerful tools became available
in endophyte research.

Endophytes may enter the plant via natural openings like
stomates or lenticels (Hallmann et al., 1997) or by wounds
induced by natural processes such as dying of epidermal cells,
lateral root formation (Shishido et al., 1995) or root growth
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through the soil. Lesions induced by pathogenic microorganisms
or nematodes (Hallmann et al., 1998) may ease endophytic
colonization. However this process does not depend on natural
or artificial wounds. Even if grown in a water culture, coloniza-
tion before the formation of laterals have been reported
(Quadt et al., 1997) indicating an active penetration ( James
& Olivares, 1998). The assumption of such a mechanism is
further supported by the presence of cellulytic and pectino-
lytic enzymes produced by numerous endophytes (Reinhold
et al., 1993). However the significance of this mechanism
for field colonization is controversial (Hallmann et al., 1997).
The colonization of the stele, and especially the xylem vessels,
is difficult to understand without the assumption of active
penetration, if one does not assume that colonization does
occur via the root apex where the vascular tissue is insuffi-

ciently differentiated (Hurek et al., 1987). Once inside the
plant the endophyte may be transported via the xylem
( James & Olivares, 1998) or inside the intercellular space
(Hurek et al., 1994). Although transport velocity is much
higher in the xylem enabling a systemic colonization of the
plant, the presence of bacteria in xylem vessels, as impress-
ingly demonstrated by James et al. (1994), is somewhat surpris-
ing because one would expect that they would cause xylem
vessel cavitation.

Endophytes may support plant growth in many instances
– as already mentioned by increasing resistance to biotic or
abiotic stress factors – the biotic factors being by far better
documented (Hallmann et al., 1997), by changing root
anatomy (Malinowski et al., 1999) as well as by contribut-
ing directly to plant mineral nutrition. It is only this latter

Fig. 4 Endophytic bacteria colonizing the intercellular space of a maize stem. Courtesy of C. Hecht-Bucholz.
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aspect which shall be considered in the scope of this review.
Diazotropic endophytes have been reported for numerous
plant species (Hecht-Buchholz, 1998), sugar cane and rice
(Boddey et al., 1995) probably being the most prominent
ones. While their presence is not in question, their ecolo-
gical significance is under debate. For sugar cane a fixation
rate of up to 150 kg N ha−1 yr−1 has been reported (Hecht-
Buchholz, 1998). Figures for other crops are much lower but
still significant (Boddey et al., 1995; Hecht-Buchholz, 1998).
The principal question to be answered is whether or not
these data obtained under more or less artificial conditions
are of relevance for agriculture. In order to contribute to this
question the following considerations raised by Dong et al.
(1994) for sugar cane may be helpful: assuming that the
apoplastic fluid in sugar cane occupies 3% of the stems we
would end up with 3 t ha−1 of apoplastic fluid from a
harvested crop of 100 t ha−1 (Dong et al., 1994). Since con-
ditions for bacterial activity, such as pH (approx. 5.5), sugar
(approx. 10%), mineral content, as well as temperature, are
near the optimum, 3000 l of broth should be sufficient to
explain a biological di-nitrogen fixation in the range given in
this section. However, there far no experimental evidence
for biological nitrogen fixation in a relevant amount by non-
legumes. Published data for sugar cane reveal a conflicting
picture: data obtained with the 15N dilution technique lead
to significantly lower figures than those obtained with the
N-balance method (Urquiaga et al., 1999). Unfortunately there
is no convincing study applying the 15N natural abundance
method which should allow a reliable estimate. In any debate
on the significance of diazotrophic endophytes it should,
however, not be overlooked that biological di-nitrogen fixa-
tion is, carbon wise, an expensive approach. If we assume a
carbon consumption of 10 g C per 1 g fixed N (Kappen
et al., 1998) we would require 1.5 T Carbon or approx. 3 T
of sugars or approx. 10% of the sugar yield for the fixation
of 150 kg N ha−1 yr−1.

VI. The apoplast of leaves – a compartment of 
storage and of reactions

1. Transport routes in the leaf apoplast

Through the petioles, the xylem stream enters into the leaf
where it is predominantly transported in the veins to sites of
rapid evaporation, such as leaf margins or leaf teeth. If the
veins are mechanically ruptured, as may occur under natural
conditions (e.g. through insect attack) the ruptured site is
rapidly bypassed possibly by an increased rate of transport in
minor veins (W. Merbach pers. comm.).

The fate of the xylem sap in the leaf apoplast was subject
of a debate between supporters of apoplastic and of symplastic
routes for water transport (Canny, 1990c). According to
current knowledge the predominant route depends mainly
on the driving force: hydrostatic pressure gradients support

transport through the apoplast, whereas osmotic gradients
mainly favour symplastic routes (Westgate & Steudle, 1985).
According to the Hagen-Poisseuille law the volume flow is
affected by the tube diameter to the fourth power. One
would, thus, expect transport to be restricted to the major veins.
However, contrary to the number of vessels per vein, diameter
of xylem vessels is rather independent of vein size (Canny,
1990a). This is not true for the smallest veins where large
vessels are absent and accumulation of solutes was observed
accordingly (Canny, 1990a). Since mass flow is difficult to
imagine outside the xylem vessels, and flux by diffusion is
just effective over very short distances (Canny, 1990b), inter-
costal fields are rather small and in most cases do not exceed
seven cell layers. For the particular cell wall zones in which
diffusion takes place, Canny has suggested the term ‘nanopaths’
(Canny, 1988).

Surprisingly little information is available on this path of
apoplastic transport in the leaf tissue. Since a study by
Strugger (1939), most authors assume there is transport in
the intercellular spaces and/or in the water films covering
the outer surfaces of cell walls. This concept may not, however,
be realistic since the wettability of cell walls, at least in the leaf
apoplast, is thought to be low (Ursprung, 1925; Ray et al.,
1958; Schönherr & Bukovac, 1972). The formation of such
an ‘inner cuticle’ depends on both plant species and environ-
mental conditions. If this holds true apoplastic transport in
the leaves would be restricted to the ‘cell wall apoplast’ (Canny,
1995), the interfibrillar and intermicellar space. Since the
water content of cell walls is rather high (Hardegree, 1989),
being lower in older than in younger plant tissue (Goldberg
et al., 1989), this is not difficult to imagine, and it has
indeed been demonstrated for roots (Bayliss et al., 1996).
We do not yet have any good information about whether
such ‘internal cuticle’ covers the entire internal leaf surface or
only certain areas, such as the substomatal cavity (Schönherr
& Bukovac, 1972; Edington & Peterson, 1977). Its existence
however, would explain how in the process of guttation,
xylem sap can be excreted from the leaf by root pressure
without flooding the entire leaf apoplast. Experiments with
stable isotopes demonstrating equilibrium within rather short
time periods suggests the ‘internal cuticle’ is not a major diffu-
sion barrier. Its nature, if existing, is not understood, but is
presumably the result of methylation rather than of cutin
incrustation (Sitte, 1991).

2. Methods of studying apoplastic solutes

One of the major problems in any approach to study
apoplastic ion relations is the method by which apoplastic
solution is obtained. For leaves several indirect methods
have been suggested, including elution procedures (Long &
Widders, 1990), the vacuum perfusion of leaf discs (Bernstein,
1971), a pressure technique ( Jachetta et al., 1986), and differ-
ent centrifugation techniques (Dannel et al., 1995; Mühling
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& Sattelmacher, 1997). All these methods have special advant-
ages of their own. For example the infiltration centrifugation
technique allows the use of solutions differing in exchange
strength (Mühling & Sattelmacher, 1995) and thus to dif-
ferentiate between free and adsorbed cations, contributing
significantly to current knowledge on ionic relations in this
plant compartment. However, in spite of the fact that ionic
conditions in the apoplast are dynamically regulated, ionic
conditions in the leaf apoplast are highly variable – both
temporal and spatial concentration gradients exist. This is
why conventional methods leading to an average concentration,
which does not exist in most locations, are inadequate to
describe a complex situation.

Due to the fact that inexpensive equipment is required,
the infiltration/centrifugation methods are probably those
most widely used in apoplast research. While concentrations of
ions such as K+ or Mg2+ and in most cases determined correctly
there is evidence that those of Ca2+ may be overestimated
(Table 1). Cytoplasmic contamination has been frequently
considered as one factor affecting the apoplastic washing fluids.
However, if the experiments are restricted to healthy non-
stressed plants cytoplasmic contamination is unlikely to
occur. Even at high centrifugation forces composition is
relatively little affected (Lohaus et al., 2000). One problem
in any application of the infiltration/centrifugation tech-
nique is the precise determination of the air- and water-filled
apoplastic spaces (Leidreiter et al., 1995) in order to convert
concentration in the washing fluid correctly into concentra-
tion in the apoplastic fluid (Lohaus et al., 2000). It should
not be overseen that with this technique and in most cases
ion- or element concentration, and not ion activity, is deter-
mined. It is thought that this may be one factor explaining
differences especially in Ca2+ obtained with different methods
(Table 1).

A more direct approach to study ionic relations in situ
is achieved by X-ray microanalysis (Pihakaski-Maunsbach &
Harvey, 1992) or the application of ion-selective microelec-
trodes (Blatt, 1985). However, X-ray microanalysis requires
complex preparation of the specimen, which is likely to dis-
turb ionic relations, especially if mobile ions such as K+ or
H+ are being considered. Recent progress in the preparation
technique (Gierth et al., 1998) however, leads to promising
results. Ion-selective microelectrodes (Felle, 1993) give access
only to the apoplast in the immediate vicinity of injured cells

or in the substomatal cavity. The use of ion selective dyes
offers the possibility of determining ionic activity at a high
temporal and spatial resolution with a minimum of invasive
disturbance (Bright et al., 1989). Its application has signific-
antly contributed to our knowledge on apoplastic processes –
the high temporal and spatial variability of ion relations in this
plant compartment became apparent (Hoffmann et al., 1992;
Hoffmann & Kosegarten, 1995; Mühling & Sattelmacher,
1995; Mühling & Sattelmacher, 1997; Mühling et al., 1997).

3. Solute relations in the leaf apoplast

Our knowledge of solute concentration in the leave apo-
plast is rather restricted. Such knowledge is important for,
amongst other things, the understanding of transport pro-
cesses such as phloem loading, enzymatic reactions as well as
cell expansion (Grignon & Sentenac, 1991; Dietz, 1997).

As first suggested by Cram (1999), plants may employ
the apoplast to adjust cell turgor. This may be of special sig-
nificance in the process of adaptation to salt stress (Clipson
et al., 1985) or increasing cell osmotic pressure. As an example,
of the latter sugar beet roots may be taken which maintain
turgor over the vegetation period in spite of a large increase
in cell osmotic pressure (Tomos et al., 1992). The precise
mechanism remains uncertain but it has been suggested
that K+ may be involved in this process (Tomos & Leigh,
1999).

With the exception of the impressive data of Nielsen &
Schjoerring (1998), demonstrating that NH4

+ in the leaf
apoplast is highly regulated (Kronzucker et al., 1998) and
that of Mimura et al. (1992) suggesting a similar mechanism
for Pi, no evidence for an ion homeostasis in the apoplast
exists although it has been suggested several times (Dietz,
1997). In the following paragraph available indications for
such a mechanism will be considered. Apoplastic Ca2+

([Ca2+]apo) has been chosen as an example. Any debate on
homeostasis of [Ca2+]apo requires precise information on the
concentration range normally encountered in this plant
compartment. Such information however, is lacking. Data
taken from the literature vary from 1000 µM to 10 µM
(Table 1). The factors responsible for this discrepancy are
numerous including extraction and determination methods
(Lohaus et al., 2000). It is suggested that the noninvasive
aequorin method gives the most reliable estimates. This

[Ca2+]apo Method Reference

300–800 µM Infiltration/centrifugation Mühling & Sattelmacher (1995)
170 µM Ca2+-selective microelectrodes Cleland et al. (1990)

100 µM
null point method 
(Stomata-aperture) De Silva et al. (1998)

10–30 µM Fluorochrome BTC Mühling et al. (1997)
< 10 µM Aequorin luminescence C. Plieth & B. Sattelmacher (unpublished)

Table 1 Estimates of ([Ca2+]apo) obtained 
with different methods

NPH034.fm  Page 178  Tuesday, December 19, 2000  6:38 PM



Tansley review no. 22

© New Phytologist (2001) 149: 167–192 www.newphytologist.com

Review 179

would indicate that [Ca2+]apo may be much lower than com-
monly anticipated.

There are indications that similar to [Ca2+]cyt, [Ca2+]apo is
involved in the regulation and differentiation of plant growth
and development and thus tightly regulated. For example,
in leaves [Ca2+]apo > 500 µM induce stomatal closure (De
Silva et al., 1985, 1998). An involvement of apoplastic
Ca2+ in controlling cell expansion (Cleland et al., 1990;
Arif & Newman, 1993) and regulation of gravitropic roots
curvature (Bjorkman & Cleland, 1991; Cleland et al., 1990;
Suzuki et al., 1994) has been described. Experiments of
Roberts & Haigler (1990) suggest an involvement of
apoplastic Ca2+ in cell differentiation such as tracheary-
element development and there may be little doubt of the
involvement of [Ca2+]apo in fruit ripening (Burns & Pressey,
1987; Almeida & Huber, 1999) and pollen tube growth
(Fan et al., 1997; Ma & Sun, 1997).

The assumption of [Ca2+]apo homeostasis is supported by the
fact that under certain circumstances variation of [Ca2+]apo
results into a change of [Ca2+]cyt (Felle, 1991; Gilroy et al.,
1991). This is understandable in the light of the existence of
several Ca2+ conducting cation channels (Smolders et al., 1997;
Geitmann & Cresti, 1998; Li et al., 1998). The existence of
apoplastic calmodulin is difficult to explain without the
assumption of a homeostasis of [Ca2+]apo if one does not
assume passive processes as the responsible factor. This how-
ever, appears unreasonable because calmodulin-specific bind-
ing proteins have been detected in the cell wall (Song et al.,
1997; Sun et al., 1998; Ma et al., 1999) and exogenous
application of calmodulin induces such diverse effects as
stimulation of cell division (Sun et al., 1994), increase of both
cell wall regeneration (Sun et al., 1995) and pollen tube growth
(Ma & Sun, 1997). The latter system appears to be specially
suited to study the significance of extracellular calmodulin.
Recent data suggest the involvement of G proteins in the
transduction of the calmodulin signal (Ma et al., 1999).

The observation that, especially in calcicole plants, [Ca2+]apo
in the leaf may differ quite drastically from those in the
xylem (De Silva et al., 1996; De Silva & Mansfield, 1999) as
well as the fact that [Ca2+]apo does respond to environmental
stimuli such as temperature and mechanical stimulation
(C. Plieth & B. Sattelmacher, unpublished) may be taken
as strong indications for a homeostasis of [Ca2+]apo. Possible
ways for its regulation will be considered below.

4. Concentration gradients in the leaf apoplast

As mentioned in VI 3. Solute relations in the apoplast, ion
relations in leaf apoplast are highly variable. Spatial gradients
may be the result of several factors among others differences
in rate of uptake, delivery by mass flow or efflux from the
symplast, and have been considered in greater details by
Canny (1990b). For the former, an example is provided by
the H+ concentration gradients in the vicinity of leaf

teeth (Canny, 1987; Wilson et al., 1991), and for the latter
the accumulation of K+ in the vicinity of stomata may be taken
(Grignon & Sentenac, 1991; Mühling & Sattelmacher, 1997).

Emphasis should be placed on the fact that at least for C4
plant species one common apoplast does not exist in leaves
(Keunecke & Hansen, 1999). Bundle sheath cells are con-
nected to mesophyll cells via numerous plasmodesmata (Evert
et al., 1977; Botha, 1992), but their apoplastic compartments
are separated by a suberin lamellae (Evert et al., 1977; Hattersley
& Browing, 1981; Botha et al., 1982; Evert et al., 1985; Canny,
1995). Thus, ionic conditions in the two apoplastic com-
partments may differ significantly. Although up to now no
direct evidence exists this may be concluded from the great
difference in pH optima of K+ channels in the two com-
partments (Keunecke & Hansen, 1999). Since a similar
situation has been described for wheat (Dietz, 1997) it may
be anticipated that a separation of the apoplast of leaves into
smaller compartments by diffusion barriers is a more common
phenomena in the plant kingdom.

Temporal variations in apoplastic ion relations are the
results of changes of metabolic activity, caused, for example,
by processes involved in day/night transition. A dark/ light
transition leads to a bi-phasic apoplastic pH response (Mühling
& Sattelmacher, 1995): alkalization observed immediately
after onset of the light treatment is considered to be a reflec-
tion of the onset of photosynthetic electron transport leading
to an alkalization of the stroma which is compensated for by
H+ uptake from the cytosol, and the apoplast, respectively. It
can be suggested that this is the first indication of the involve-
ment of physical pH state in pH maintenance in leave tissue
and demonstrate the significance of the leaf apoplast as a
transient ion reservoir. Temporal variation in apoplastic ion
relations may also be the result of changing environmental
conditions. Exposure of leaves to NH3 (Hanstein & Felle, 1999;
Hanstein et al., 1999) or to stress may be taken as examples
(Behl & Hartung, 1986; Daeter & Hartung, 1995).

5. Ion relations in the leaf apoplast and symptoms of 
deficiency and toxicity

Ionic conditions in the leaf apoplast are of significance for the
occurrence of deficiency as well as for the toxicity sym-
ptoms. Following are just a few examples for each situation.
(1) Fe-deficiency: it has been reported that under certain
conditions, leaves revealing Fe deficiency symptoms may have
higher total Fe contents than control leaves (Mengel et al., 1984).
This has been interpreted as the result of Fe immobilization
in the leaf apoplast (Mengel & Geurtzen, 1988) due to high
apoplastic pH (Hodson & Sangster, 1988; Smolders et al.,
1997; Kosegarten et al., 1999). In spite of the fact that, so
far, evidence for high apoplastic pH in relevant degree are
missing (Mühling & Sattelmacher, 1995), a point has been
made that Fe content in leaves should only be compared if
leaf size is comparable (Hanstein et al., 1999), which may
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not have been the case in the above mentioned study. This
point is of significance because at heavy Fe deficiency leaf
expansion may be hampered which leads to a concentration
effect. However, independent data demonstrate that cell wall
Fe may not be completely remobilized (Zhang et al., 1996)
thus limiting Fe use efficiency (i.e. dry matter production
per mol Fe acquired). (2) Ca-deficiency: in most cases Ca
deficiency can not be related to leaf elemental content
(Murtadha et al., 1988). In many cases tissues revealing Ca-
deficiency symptoms had higher Ca contents than control
tissue (Foroughi & Kloke, 1974; Steenkamp et al., 1983).
Higher Ca influx into the necrotic tissue as well as con-
centration effects due to losses of dry matter have been
discussed as possible explanations (Wissemeier, 1996). The
significance of apoplastic Ca2+ for the characterization of the
nutritional status of plant tissue could be first demonstrated
by Behling et al. (Wissemeier & Horst, 1991). Wissemeyer
(pers. comm.) could demonstrate that Ca2+ activity but not
content in the leaf apoplast of potato correlated with Ca2+

supply as well as with genotypic differences in Ca efficiency.
Different contents in chelating substances such as organic
acids in the apoplastic fluid have been discussed as being
responsible for the difference between content and activity.
(3) Mn-toxicity: large differences in respect to critical Mn
content between and within plant species have been
reported (Wissemeier & Horst, 1991) which cannot be
explained by differences in exclusion ability but rather by
differences in tissue tolerance (Horst, 1983). Mn-tolerant geno-
types may reveal higher Mn contents without any toxicity
symptoms than Mn-sensitive ones (Burke et al., 1990). It
could be demonstrated that Si plays a key role in the process
of Mn tissue tolerance ( Jucker et al., 1999). This is apparently
correlated with apoplastic processes – application of Si reduces
the amount of free Mn2+ in the apoplastic fluid (Maier,
1997). But according to this author the key component for
Mn tolerance is apoplastic organic acids which reduce
Mn2+ activity. (4) Salt toxicity: it was first suggested by
Oertli (1968) that accumulation of salt in the leave apoplast
may be one factor for the syndrome of salt toxicity. So far
only a few studies have dealt with the relation between leaf
apoplastic ion concentrations and salt tolerance suggesting an
inverse relationship between the two factors (Speer & Kaiser,
1991) and thus supporting the so called ‘Oertli hypothesis’
(Kinraide, 1999). However, it has been suggested that the
increase of apoplastic solute content may be due to damage
of membrane integrity rather that a primary response to
salinity (Niu et al., 1995). Recent results suggest that not
only the osmotic relationhsip but also tolerance of apoplastic
enzymes are of significance (Thiyagarajah et al., 1996). As
considered in VI 9. Apoplastic ion balance in greater detail,
ion accumulation in the leaf apoplast does occur only if xylem
import exceeds phloem export. The significance of phloem
export in the process of salt tolerance has, thus, been recently
stressed (Lohaus et al., 2001).

6. Ion relations in the leaf apoplast – influence of 
nutrient supply

The impact of nutrient supply to the rooting medium on
the ionic relations in the leaf apoplast depends strongly on the
nutrient under consideration. While apoplastic K+ concentra-
tion is a reflection of K+ supply (Mühling & Sattelmacher,
1997), apoplastic Ca2+ remains relatively stable. The rapid
decrease in apoplastic K+ that occurs well in advance of a
decrease in total tissue K+ demonstrates the sensitivity of this
parameter. Since K+ is the most abundant cation by far
(Mühling & Sattelmacher, 1995) it may be anticipated that
a decrease in K+ has far reaching consequences for the
composition of the apoplastic solution. The influence of the
form of N supply (NO3

– vs NH +
4 ) on apoplastic pH in

leaves has been debated controversially. It has been argued
that NO3

– nutrition leads to an alkalization while NH +
4

induces an acidification (Hoffmann et al., 1992; Mengel
et al., 1994). Our own work suggest that NO3

+ nutrition
may lead to an alkalization depending on NO3

+ concentration
in the xylem sap, which is dependent, among other factors,
on the NO3

+ concentration in the nutrient solution and the
NO3

+ reductase activity in the root. However, NH +
4  nutrition

should normally reveal little influence on apoplastic pH in
leaves, since at least at low N concentration in the rooting
medium, NH +

4  concentration in the leaf apoplast is unaffected
by the form in which N is supplied. This has been questioned
by Finnemann & Schjoerring (1999) who reports relatively
high NH +

4  concentrations in the xylem sap and in the leaf
apoplast, the latter is probably due to photorespiration and is
highly regulated (Kronzucker et al., 1998; Nielsen & Schjoerring,
1998). While the form of N supply to the rooting medium has
relatively little effect on apoplastic pH, this is not true for foliar
application of NH +

4  which leads to an immediate acidification
(Peuke et al., 1998), while fumigation with NH3 decreases
H+ activity (Hanstein & Felle, 1999; Hanstein et al., 1999).

7. The leaf apoplast – compartment for transient 
ion storage

The function of the leaf apoplast as a reservoir for ions such
as K+ has been demonstrated in the vicinity of guard cells
or motor cells (Bowling, 1987; Freudling et al., 1988). The
apoplast has several advantages over the vacuole in respect to
storage of cations and also anions (Grignon & Sentenac,
1991; Mühling & Sattelmacher, 1995). Therefore, a more
general role of the apoplast as a short-term reservoir for ions
may be anticipated. The advantages are mainly the high
CEC of the cell walls (VI 3. Secondary ion balance) and the
ease with which ions can be taken up from the apoplast. As
has been discussed in greater detail by Grignon & Sentenac
(1991) ions are taken up easily, because the nondiffusible
anions can be neutralized by H+. An H+/cation exchange thus
leads to a reduction of the negative charge and increases the
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electrochemical gradient. Because H+ is osmotically inactive,
the osmotic gradient increases simultaneously. Due to the
very small size of the leaf apoplast even small amounts of
ions can cause significant changes in osmotic potential (Blatt,
1985). In this context it is tempting to speculate that the
ionic conditions in the leaf apoplast and the above mentioned
mechanisms may be one reason for the differences between
plant and animal cells in respect to the ion species pumped
for the generation of the electrochemical gradient: while
animal cells mainly pump Na+, plant cells utilize H+.

8. Ion fluxes between apoplast and symplast

Little information is available on nutrient fluxes from and into
the apoplast of leaves. This is partly due to the fact that basic
information such as ionic concentrations in this plant com-
partment cannot be readily obtained from the literature. As
already considered for Ca2+ (Table 1) available information on
the concentration of other ions such as K+ varies widely – from
50 µM (Blatt, 1985) to 100 mM (Teng & Widders, 1988; Long
& Widders, 1990). It has been suggested that next to circadian
variations (Teng & Widders, 1988; Mühling & Sattelmacher,
1995), and partially questionable methodological approaches,
concentration gradients within the leaf apoplast (Canny, 1990b;
Wilson et al., 1991) are responsible for this strong variation.

So far, ion channels and co-transporters have been identified.
The former mainly in guard cells (K+ and Cl– channels)
showing that large fluxes are induced in response to a closing
or opening signal (Schroeder et al., 1984; Hosoi et al., 1988;
MacRobbie, 1988; Hedrich & Dietrich, 1996; Roelfsema &
Prins, 1997; Felle et al., 2000). Apoplastic Ca2+ is thought
to play a key role in this process (Schulz & Hedrich, 1995).
The latter in mesophyll cells for peptides ( Jamai et al., 1994),
and anions such as Pi (Mimura et al., 1992).

Regulation of stomatal conductance is a good example of
the significance of the apoplast as a compartment of signal
transduction. Since guard cells and neighbouring cells are not
connected symplasmatically, all solutes involved are transported
in the apoplast. Apoplastic signalling is a fascinating subject
which is unfortunately beyond the limits of this review (Carpita
et al., 1996; Dietz, 1997).

As discussed in VI 1. Transport routes in the leaf apoplast,
it has been suggested that ions are absorbed into the
symplast mainly in the vicinity of the minor veins. In this
context, ion conductance in the paratracheal parenchyma
is of special interest. Information available demonstrates
the presence of ion channels for the xylem contact cells
(Keunecke et al., 1997). At present, two classes of channels,
differing in pH optima, have been identified (Keunecke &
Hansen, 1999). It is suggested that they are separated by a
cutin lamella. While acidification stimulates K+ conductance
in the bundle sheath a decrease is found in the mesophyll
cells (Keunecke & Hansen, 1999). The characteristics of these
channels and the influence of ionic concentration show that

they are in the range of the uptake system II that is char-
acterized by high uptake rate, but low selectivity. These
characteristics are advantagous for the conditions in the leaf
apoplast: (1) ions in this plant compartment have, in most
cases, been absorbed selectively from the rooting medium
and translocated into the xylem and have thus passed at least
two membranes; (2) taking the dimension of the leaf
apoplast into account, selectivity of ion uptake from the leaf
apoplast would lead to a rapid accumulation of those ions
acquired with less preference; (3) a high uptake rate is
required to prevent their accumulation if the supply of ions
into the leaf apoplast by the transpiration stream is high.

9. Apoplastic ion balance

If ion transport into the leaf apoplast exceeds uptake into
the symplast, any ions that cannot be retranslocated via the
phloem may accumulate in the leaf apoplast (Flowers & Yeo,
1986; Flowers et al., 1991; Speer & Kaiser, 1991). Attempts
to calculate ion balances of the leaf apoplast at different
nutritional situations for Ricinus communis (Komor et al., 1989;
Schobert & Komor, 1992; Zhong et al., 1998) as well as for
Zea mays (Lohaus et al., 2000) stress the significant role of the
phloem export. An accumulation of ions in the leaf apoplast
has been reported for salt stress (Flowers & Yeo, 1986;
Flowers et al., 1991) as well as for Mn toxicity (Wissemeier
& Horst, 1990).

The following mechanisms may contribute to the avoidance
of toxic ion concentration in the leaf apoplast under such
conditions, the relative significance varying with plant species
as well as with the solute under consideration: removal from
the equilibrium by precipitation as calcium oxalate either in
the apoplast (Fink, 1992) or in the vacuoles of idioblasts
(Ruiz & Mansfield, 1994); guttation (Zornoza & Carpena,
1992); leaching from the leaf apoplast (Arens, 1934);
incorporation into the epidermis (Sangster & Hodson, 1986)
and the trichomes (De Silva et al., 1996; Zhao et al., 2000);
vs abscission of the entire leaf. While the relevance of most
of these parameters for stress avoidance is well documented,
the role of leaching from the leaf for apoplastic solute balance
is still debatable (Pennewiss et al., 1997). Leaching from
the leaf apoplast has attracted interest mainly in relation to
forest decline (Mengel et al., 1987; Pfirrmann et al., 1990;
Turner & Tingey, 1990) or nutrient cycling in nutrient-limited
ecosystems (Tukey et al., 1964, 1988). However, in older
literature the so-called ‘kutikuläre Exkretion’ (Arens, 1934)
was considered to be an important mechanism for avoiding
high salt concentrations in the leaf. The influence of misting
in stimulating growth as observed by Pennewiss et al. (1997)
is in general agreement with more recent findings with Picea
(Leisen et al., 1990). Experiments with maize revealed a
beneficial effect of leaching only at rather high concentra-
tions of NaCl (Pennewiss et al., 1997). In our own experi-
ments on the effects of misting on growth, large differences
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between plant species were observed: while Lupinus luteus
responded with a dramatic increase in growth, in plants such
as Gossypium hirsutum growth was impeded (Pennewiss et al.,
1997). Although the leaf water status was improved by misting
this cannot explain the observed growth phenomena (Stirzaker
et al., 1997). From the data obtained it is not possible to
explain the precise path by which ions are leached from the leaf

apoplast, but one may speculate that stomates or hydathodes
and trichomes are significant. Calcium-containing crystals
adhering to the trichomes of L. luteus at high Ca2+ concentra-
tion in the nutrient solution (Sattelmacher & Mühling, 1997)
and the discovery of transfer cell-like structures in the base
cell of L. luteus trichomes may be taken as support for such
an assumption (Fig. 5).

Fig. 5 Calcium crystals adhering to trichomes of Lupinus luteus after cultivation in a nutrient solution containing 15 mM Ca2+ (a) and 
transfer-cell-like structures of the base cell of the trichomes shown above (b). Courtesy of W. H. Schröder (a) and E. Landsberg (b).

NPH034.fm  Page 182  Tuesday, December 19, 2000  6:38 PM



Tansley review no. 22

© New Phytologist (2001) 149: 167–192 www.newphytologist.com

Review 183

10. Leaf apoplast – interaction with the atmosphere

The leaf apoplast connects the plant with the atmosphere.
Together with the atmospheric conditions the properties of the
cuticle, stomates, and conditions in the leaf apoplast, determine
the exchange processes in either direction. Even though it is
not of direct significance in this context, it may be of general
interest that ozone is detoxified in the leaf apoplast by cell
wall-bound peroxidases (Langebartels et al., 1991; Luwe et al.,
1993). The interaction of atmospheric pollutants with the leaf
apoplast are considered here only in relation to the mineral
nutrition (for N and S).

As demonstrated for NH3, plants may represent both a
sink and a source for ammonia (Husted & Schjoerring,
1996). Exchange properties depend largely on physiological
conditions in the leaf apoplast (Mattsson et al., 1998). In
this context the pH of the apoplastic solution is of special
interest (Husted & Schjoerring, 1995). Nitrogen nutrition
apparently has less influence than stomatal conductance
(Husted & Schjoerring, 1996) and the NH3 concentration
in the atmosphere (Hanstein et al., 1999). It is not surpris-
ing that NH3 volatilization may be especially high at plant
maturity (Husted & Schjoerring, 1996).

The pollutant N2O originating from anthropogenic sources
may be absorbed in relatively large amounts through stomates
(Wellburn, 1990). After detoxification, in which ascorbate may
be involved (Ramge et al., 1993), it can be used as an N
source, and beneficial effects on plant growth have been reported
(Hufton et al., 1996). The significance of endophytic chemo-
lithoautotrophic nitrite oxidizers for the N2O emission of
plants has recently been suggested for Picea in a natural eco-
system (H. Papen, pers. comm.). This result is interesting
since data on plants as N2O sources is rather obscure.

SO2 is oxidized autocatalytically or by peroxidation into
SO4

2+ in this plant compartment (Pfanz et al., 1992) and
consequently is absorbed in this form by the cells (Polle
et al., 1994).

VII. Conclusions

Apoplastic properties greatly influence all aspects of plant
mineral nutrition: chemical composition of root cell walls
may be involved in both efficient use of nutrients, such as Zn
or Cu, and tolerance against toxic ions, such as Na or Al. Ion,
relations in the apoplast may differ quite significantly from
those in the rhizosphere, which may explain uptake phenomena
such as apparent synergisms. Although an exodermis is formed
in most plant species, this does not apparently represent an
absolute diffusion barrier for nutrients. The significance of
the apparent free space for nutrient absorption however, is
questionable.

The chemical composition of the xylem is highly variable
and the mechanisms involved in ion exchange require fur-
ther elucidation. Due to the high cation exchange capacity

of the cell walls polyvalent cations are mostly transported in
chelated form. Organics in the xylem sap may contribute
significantly to the osmotic potential in some plant species.
Beacause of cycling of both nutrients and water within the
plant, the composition of the xylem sap does not necessarily
represent root activity.

The apoplast of all plant parts may be colonized by
endophytes that might contribute to the mineral nutrition,
as demonstrated for diazotrophic organisms.

Ion relations in the leaf apoplast are very variable; how-
ever, they may be regulated, as discussed in greater detail for
Ca2+. Nutrient supply to the rooting media influences com-
position of the apoplastic fluid. The leaf apoplast may reveal
certain benefits over the vacuole as a site for short-term nutrient
storage, in addition to its importance as a site for solute
exchange with the atmosphere.
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