

INFORMAÇÕES AGRONÔMICAS

Nº 118 JUNHO/2007

NÍQUEL - DE TÓXICO A ESSENCIAL¹

Eurípedes Malavolta² Milton Ferreira Moraes³

RELHA-DE-RATO é a expressão usada para descrever sintomas peculiares das folhas de pecã (*Carya illinoinensis*) e de algumas outras plantas. A ponta das folhas novas apresenta manchas escuras e é arredondada, o que lhes confere um aspecto parecido com o da orelha do rato. A desordem, conhecida desde 1918, afetou pomares no Sudeste da Costa do Golfo e das Planícies Costeiras dos Estados Unidos (WOOD et al., 2004a).

Inicialmente, a desordem foi atribuída a várias causas, como dano por baixa temperatura no verão, doença causada por vírus ou deficiência de manganês (Mn) ou cobre (Cu). Entretanto, a análise das folhas afetadas e das sadias revelou que os sintomas eram devidos à deficiência de níquel (Ni), causada por baixos níveis no solo ou induzida por excesso de Zn (WOOD et al., 2004b). A pulverização foliar de sulfato de níquel (NiSO₄.6H₂O), realizada no outono, foi transportada para tecidos dormentes de ramos e gemas numa proporção suficiente para o crescimento normal. Na primavera seguinte, as folhas das plantas tratadas tinham aspecto normal, apresentando 7 mg kg⁻¹ de Ni, enquanto as deficientes tinham 0,5 mg kg⁻¹. Os solos dos pomares mostrando deficiência severa apresentavam de 0,4 a 1,4 kg ha⁻¹ de Ni (WOOD et al., 2006a).

O Ni costumava ser classificado como não essencial ou tóxico para as plantas. Entretanto, o trabalho com a pecã e com outras culturas mostrou que ele satisfaz o critério indireto de essencialidade proposto por Arnon e Stout (1939). Ele preenche também o critério direto: a urease é uma metaloenzima ubíqua contendo Ni (DIXON et al., 1975). Eskew et al. (1983, 1984) e Brown et al. (1987) colocaram-no na lista de micronutrientes. Já em 1946, Roach e Barclay, em ensaios de campo feitos na Inglaterra com trigo, batata e vagens, obtiveram aumentos na produção graças à aplicação de Ni em pulverizações. Anteriormente, Arnon (1937), em um experimento no qual cultivou cevada em solução nutritiva, verificou

Veja também neste número:

Os caminhos do nitrogenio – do fertilizante	•
ao poluente	6
Divulgando a Pesquisa	11
Painel Agronômico1	13
Cursos, Simpósios e outros Eventos 1	14
Publicações Recentes 1	15
Ponto de Vista 1	16
ENCARTE 24	p.

maior produção de massa seca em presença de crômio (Cr), molibdênio (Mo) e Ni quando a fonte de nitrogênio (N) era o sulfato de amônio. O efeito não foi observado quando a fonte de N era a nítrica. Não foi fornecida explicação para esse achado. Mencionase, a propósito, que o Ni está presente na solução nutritiva de Epstein e Bloom (2005, p. 31). Ao que parece, Arnon (1937) não deu importância ao efeito do Ni, já que o omitiu no título do trabalho. Quinze anos antes do experimento de Arnon (1937), Bertrand e Mokragnatz (1922) fizeram uma comunicação à Academia de Ciências da França sobre a "presença do cobalto (Co) e do Ni nas plantas". Anteriormente, "descobriram e determinaram os dois elementos na terra arável".

A urease desdobra a uréia hidroliticamente em amônia (NH₃) e dióxido de carbono (CO₂). A uréia [CO(NH₂)₂] se origina da amida arginina sob ação da enzima arginase. A deficiência de Ni, impedindo a ação da urease, leva ao acúmulo de uréia, o que causa manchas necróticas nas folhas (Figura 1). Como conseqüência da

IPNI - INTERNATIONAL PLANT NUTRITION INSTITUTE

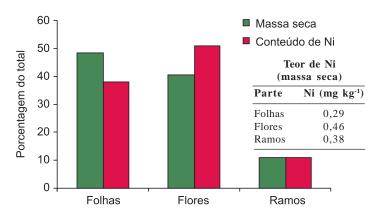
Rua Alfredo Guedes, 1949 - Edifício Rácz Center, sala 701 - Fone e fax: (19) 3433-3254 - Website: www.ipni.net - E-mail: ipni@ipni.com.br Endereço Postal: Caixa Postal 400 - CEP 13400-970 - Piracicaba-SP, Brasil

¹ Tradução ampliada do artigo "Nickel – from Toxic to Essential Nutrient", publicado em **Better Crops**, v. 91, n. 3, p. 26-27, 2007.

² Professor Catedrático (aposentado), Centro de Energia Nuclear na Agricultura (USP), Laboratório de Nutrição Mineral de Plantas, Piracicaba, SP. Bolsista do CNPq; e-mail: mala@cena.usp.br

³ Eng. Agr., M.Sc., Estudante de Doutorado, Centro de Energia Nucelar na Agricultura. Bolsista FAPESP; e-mail: moraesmf@yahoo.com.br

NÍQUEL


Figura 1. Sintomas de deficiência de níquel em cevada (*Hordeum vulgare* L. cv Onda) após 50 dias em solução nutritiva contendo concentrações equimolares de nitrato e amônio. Os sintomas incluem clorose e necrose no ápice das follhas, desenvolvimento de folhas finas com aspecto de "rabo-de-rato" e clorose internerval das folhas jovens (Crédito: Dr. Patrick Brown, University of California, Davis).

deficiência, o metabolismo de ureídeos, aminoácidos e de ácidos orgânicos é perturbado. Os ácidos oxálico e málico se acumulam (BAI et al., 2006). Esses fatos sugerem que o Ni possa exercer múltiplos papéis nas plantas. As manchas necróticas, associadas com a deficiência, coincidem com locais de acumulação de uréia ou dos ácidos oxálico e lático, o que indica também mudanças no metabolismo do carbono (C), em particular diminuição na respiração.

O níquel tem relação também com a fixação simbiótica do N visto que aumenta a atividade da hidrogenase em bacterióides isolados dos nódulos (KLUCAS et al., 1983). Mais recentemente, Ureta et al. (2005) demonstraram que baixo nível de Ni nos solos agrícolas pode limitar a atividade da hidrogenase simbiótica de Rhizobium leguminosarum. Quando presente na solução nutritiva, inibiu a produção de etileno por feijão e macieira (SMITH e WOODBURN, 1984). Bertrand e Wolf (1954) analisaram as raízes, nódulos e parte aérea de várias leguminosas, entre elas feijão e soja. Consistentemente, os teores mais altos de Ni e Co foram encontrados nos nódulos. Experimentos de campo descritos em 1973 mostraram que a adição de até 40 g ha-1 Ni aumentou a nodulação e a produção de grãos de soja (BERTRAND, 1973). Em revisões extensas, Mishra e Kar (1974) e Gerendas et al. (1999) mencionam que pulverizações com sais de Ni são muito eficientes contra a infecção de ferrugens de cereais devido à sua toxidez para o patógeno e também devido a mudanças causadas na fisiologia do hospedeiro que levam à resistência. Em sua contribuição, Forsyth e Peturson (1958) haviam demonstrado a ação protetora e erradicativa do Ni com respeito à ferrugem dos cereais (trigo e aveia) e do girassol. Com base em trabalho na mesma linha, Graham et al. (1985) chamam a atenção para a possibilidade do uso do Ni no controle de ferrugens que afetam diversas culturas em várias regiões.

Plantas cultivadas em solos não contaminados possuem Ni numa larga faixa de 0,05 a 5 mg kg-1 de massa seca. A amplitude de variação é devido à disponibilidade no solo e à espécie analisada. Órgãos diferentes ou partes da mesma planta também podem mostrar teores diversos. De acordo com Gerendas et al. (1999), o limbo foliar possui mais Ni durante o crescimento vegetativo. Na colheita, entretanto, os grãos possuem mais Ni que a palha. No florescimento da primavera, a repartição de micronutrientes nos ramos de laranjeira revelou um conteúdo surpreendentemente alto de Ni, metade do

total encontrado nas flores (Figura 2). É sabido que o aumento no nível de NH_3 nas folhas pode causar um incremento na indução floral (LOVATT et al., 1988). Isto sugere que o alto nível de Ni nas flores, não relatado previamente, possa aumentar a atividade da urease e gerar NH_3 que, por sua vez, aumentaria o florescimento e a porcentagem de pegamento (MALAVOLTA et al., 2006).

Figura 2. Conteúdo e repartição de Ni em citros no surto primaveril. **Fonte:** MALAVOLTA et al. (2006).

Os sintomas de toxidez se desenvolvem quando níveis excessivos são absorvidos. Tais sintomas incluem clorose, devida à menor absorção de ferro, crescimento reduzido das raízes e da parte aérea, deformação de várias partes da planta e manchas peculiares nas folhas (MISHRA e KAR, 1974). As plantas variam em sua sensibilidade ao excesso. Assim, por exemplo, o feijão é mais sensível que o arroz (PICCINI e MALAVOLTA, 1992). Os níveis tóxicos estão comumente na faixa de 25 a 50 mg kg⁻¹.

Há espécies, entretanto, que toleram níveis excepcionalmente altos de Ni no substrato e no tecido – as hiperacumuladoras. Tais plantas prosperam em solos ricos em Ni, usualmente solos de serpentina ou contaminados. *Alyssum bertolonii*, encontrada na Itália e na Geórgia (na ex URSS), contém 4.000 mg kg⁻¹ nas folhas e 2.500 mg kg⁻¹ nas sementes. Entre as plantas coletadas em solos ricos em Ni do Brasil, Brooks et al. (1990) encontraram várias hiperacumuladoras: *Vellozia* spp, com mais de 3.000 mg kg⁻¹ em suas folhas, e S*ebertia acuminate*, com 11.700 mg kg⁻¹.

USO NO CAMPO E RESPOSTA

Culturas no campo respondem à adição de Ni? As exigências de Ni são da mesma ordem de grandeza que as de Mo e Co, ao redor de 0,05 mg kg¹ de massa seca. A deficiência de Mo tem sido descrita e são bem conhecidas as respostas ao seu uso. O Co é aplicado rotineiramente no tratamento de sementes de leguminosas. Respostas ao Ni, além das constatadas em pecã (Figura 3) e bétula (*Betula nigra*) (RUTER, 2005), poderão aparecer no futuro em outros países e em outras culturas.

O Ni ocorre nos solos em várias formas: na solução do solo, trocável e não trocável, em minerais e associado à matéria orgânica. O teor de Ni "assimilável" em solos franceses foi determinado por Bertrand e Wolf (1968) após extração com ácido nítrico diluído, os teores variaram de 47 a 1.590 µg (microgramas) kg-1. Teores inferiores a 200 µg indicam possibilidade de resposta à adição de Ni. De acordo com esse critério, "ao redor de 27% das terras francesas aráveis são deficientes em níquel". Um estudo de 863 solos norteamericanos mostrou uma média de 20 mg kg-1 e uma variação de menos de 5 até 700 mg kg-1 (UREN, 1992). Análises de 38 amostras de solos do Estado de São Paulo mostraram um teor do Ni solúvel em DTPA na faixa de menos de 0,5 até 1,4 mg kg-1, valores conside-

Figura 3. Esta árvore de pecã estava deficiente em níquel. O galho à direita foi tratado no início da primavera com uma única aplicação foliar de sulfato de níquel, enquanto o galho à esquerda não foi tratado. Efeitos no crescimento foram visíveis cerca de 14 dias após o tratamento (Crédito: Dr. Bruce Wood, USDA-ARS).

rados baixos. O teor total variou de menos de 10 até um máximo de 127 mg kg⁻¹ (ROVERS et al., 1983).

A deficiência de Ni pode ser devida aos baixos níveis das formas disponíveis ou pode ser induzida por vários fatores, particularmente os seguintes (WELLS, 2005; WOOD et al., 2006a): 1) altos teores de Ca, Mg, Cu e Zn inibem a absorção; 2) a disponibilidade diminui com aplicações excessivas de calcário, que elevam o pH acima de 6,5; 3) altas doses de adubos fosfatados ou altos níveis de P no solo reduzem a disponibilidade no próprio solo ou dentro da planta propriamente dita; 4) nematóides danificam o sistema radicular e causam deficiência severa.

Uma ou duas aplicações de Ni nas folhas, na concentração de 10 a 100 mg L-1 (mais uréia e um surfactante), no caso da pecã, podem corrigir a deficiência e garantir o crescimento normal. Os tratamentos são feitos durante a fase inicial de expansão da copa ou logo depois da abertura das gemas (WOOD et al., 2006a). Esta prática, eficiente para a orelha-de-rato da pecã, pode servir como exemplo para outras frutíferas perenes, a serem avaliadas mediante experimentação. O trabalho com bétula foi feito em plantas cultivadas em vasos. As plantas pulverizadas com sulfato de níquel nas concentrações de 394 e 789 mg L⁻¹ de Ni, na presença de uréia, mostraram crescimento normal 7 dias após o tratamento. Outras tratadas com 500 mL de solução por vaso (150 mg Ni), fizeram-no 16 dias depois da aplicação. Seregin e Kozhevnikova (2006) relatam que a pulverização do algodoeiro com uma solução de sulfato de níquel (234,8 mg kg⁻¹) aumentou o número de gemas e de flores, a velocidade de crescimento das maçãs e o teor de óleo das sementes. Recentemente, Wood et al. (2006b) foram capazes de corrigir a deficiência de Ni em pecã com pulverização de um extrato aquoso de Alyssum murale, uma hiperacumuladora.

Vários produtos podem ser usados em pulverizações, incluindo-se sulfato, ${\rm NiSO_4.6H_2O}$ e quelatos sintéticos. Tanto a American Association of Plant Food Control Officials como o Departamento de Agricultura (USDA) colocaram o Ni na lista dos micronutrientes. Um produto novo, um quelado de lignosulfonato com 6% de Ni e 10% de N está no mercado norte-americano. No Brasil, a lei que controla o comércio de fertilizantes e corretivos apresenta uma lista de produtos para aplicação via solo ou foliar e estabelece a concentração mínima para registro.

LITERATURA CITADA

ARNON, D.I. Ammonium and nitrate nitrogen nutrition of barley and rice at different seasons in relation to hydrogen ion concentrations, manganese, copper and oxygen supplied. **Soil Science**, v. 44, n. 2, p. 91-121, 1937.

ARNON, D.I.; STOUT, P. R. The essentiality of certain elements in minute quantity for plants with special reference to copper. **Plant Physiology**, v. 14, n. 2, p. 371-375, 1939.

BAI, C.; REILLY, C. C.; WOOD, B. W. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. **Plant Physiology**, v. 140, n. 2, p. 433-443, 2006. BERTRAND, D. Importance du nickel, comme oligo-élément, pour les *Rhizobium* des nodosités des legumineuses. **Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences**, Paris, v. 276, n. 12, p. 1855-1858, 1973. (Serie D).

BERTRAND, D.; WOLF, A. Le nickel et le cobalt des nodosites des legumineuses. **Bulletin de la Societe de Chimie Biologique**, v. 36, n. 6-7, p. 905-907, 1954.

BERTRAND, D.; WOLF, A. Sur le nickel "assimilable" des terres arables. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences, Paris, v. 267, n. 1, p. 81-83, 1968. BERTRAND, G.; MOKRAGNATZ, M. Sur la presence du cobalt et du nickel chez les végétaux. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences, Paris, v. 175, p. 458-460, 1922.

BROOKS, R. R.; REEVES, R. D.; BAKER, A. J. M.; RIZZO, J. A.; FERREIRA, H. D. The Brazilian serpentine plant expedition (BRASPEX), 1988. **National Geographic Research**, v. 6, n. 2, p. 205-219, 1990.

BROWN, P. H.; WELCH, R. M.; CARY, E. E. Nickel: a micronutrient essential for higher plants. **Plant Physiology**, v. 85, n. 3, p. 801-803, 1987.

DIXON, N. E.; GAZZOLA, C.; BLAKELEY, R. L.; ZERNER, B. Jack bean urease (EC 3.5.1.5) a metalloenzyme: simple biological role for nickel. **Journal of the American Chemical Society**, v. 97, n. 14, p. 4131-4133, 1975.

EPSTEIN, E.; BLOOM, A. J. **Mineral nutrition of plants**: principles and perspectives. 2ed. Sunderland: Sinauer, 2005. 400 p.

ESKEW, D. L.; WELCH, R. M.; CARY, E. E. Nickel: an essential micronutrient for legumes and possibly all higher-plants. **Science**, v. 222, n. 4624, p. 621-623, 1983.

ESKEW, D. L.; WELCH, R. M.; NORVELL, W. A. Nickel in higher plants: further evidence for an essential role. **Plant Physiology**, v. 76, n. 3, p. 691-693, 1984.

FORSYTH, F. R.; PETURSON, B. Chemical control of cereal rusts. 4. The influence of nickel compounds on wheat, oat, and sunflower rusts in the greenhouse. **Phytopathology**, v. 49, n. 1, p. 1, 3, 1050

GERENDAS, J.; POLACCO, J. C.; FREYERMUTH, S. K.; SATTELMACHER, B. Significance of nickel for plant growth and metabolism. **Journal of Plant Nutrition and Soil Science**, v. 162, n. 3, p. 241-256, 1999.

GRAHAM, R. D.; WELCH, R. M.; WALKER, C. D. A role for nickel in the resistance of plants to rust. In: AUSTRALIAN AGRONOMY CONFERENCE, 3., 1985, Hobart. **Proceedings...** Hobart: Australian Society of Agronomy, 1985, p. 337.

KLUCAS, R. V.; HANUS, F. J.; RUSSELL, S. A.; EVANS, H. J. Nickel: a micronutrient element for hydrogen-dependent growth of *Rhizobium japonicum* and for expression of urease activity in soybean leaves. **Proceedings of the National Academy of Sciences of the United States of America**, v. 80, n. 8, p. 2253-2257, 1983.

LOVATT, C. J.; ZHENG, Y. S.; HAKE, K. D. Demonstration of a change in nitrogen-metabolism influencing flower initiation in citrus. **Israel Journal of Botany**, v. 37, n. 2-4, p. 181-188, 1988. MALAVOLTA, E.; LEÃO, H. C. de; OLIVEIRA, S. C.; LAVRES JUNIOR, J.; MORAES, M. F.; CABRAL, C. P.; MALAVOLTA, M. Repartição de nutrientes nas flores, folhas e ramos da laranjeira cultivar natal. **Revista Brasileira de Fruticultura**, v. 28, n. 3, p. 506-511, 2006.

MISHRA, D.; KAR, M. Nickel in plant growth and metabolism. **Botanical Review**, v. 40, n. 4, p. 395-452, 1974.

PICCINI, D. F.; MALAVOLTA, E. Toxicidade de níquel em arroz de feijão em solos ácidos. **Revista Brasileira de Ciência do Solo**, v. 16, n. 2, p. 229-233, 1992.

ROACH, W. A.; BARCLAY, C. Nickel and multiple trace element deficiencies in agricultural crops. **Nature**, v. 157, n. 3995, p. 696, 1946.

ROVERS, H.; CAMARGO, O. A.; VALADARES, J. M. A. S. Níquel total e solúvel em DTPA em solos no Estado de São Paulo. **Revista Brasileira de Ciência do Solo**, v. 7, n. 3, p. 217-220, 1983.

RUTER, J. M. Effect of nickel applications for the control of mouse ear disorder on River Birch. **Journal of Environmental Horticulture**, v. 23, n. 1, p. 17-20, 2005.

SEREGIN, I. V.; KOZHEVNIKOVA, A. D. Physiological role of nickel and its toxic effects on higher plants. **Russian Journal of Plant Physiology**, v. 53, n. 2, p. 257-277, 2006.

SMITH, N. G.; WOODBURN, J. Nickel and ethylene involvement in the senescence of leaves and flowers. **Naturwissenschaften**, v. 71, n. 4, p. 210-211, 1984.

UREN, N. C. Forms, reactions, and availability of nickel in soils. **Advances in Agronomy**, v. 48, p. 141-203, 1992.

URETA, A. C.; IMPERIAL, J.; RUIZ-ARGÜESO, T.; PALACIOS, J. M. *Rhizobium leguminosarum* biovar viciae symbiotic hydrogenase activity and processing are limited by the level of nickel in agricultural soils. **Applied and Environmental Microbiology**, v. 71, n. 11, p. 7603-7606, 2005.

WELLS, L. **Mouse-ear of pecan**. The University of Georgia, Cooperative Extension, 2005. 4 p. (Circular, 893).

WOOD, B. W.; REILLY, C. C.; NYCZEPIR, A. P. Mouse-ear of pecan: I. Symptomatology and occurrence. **HortScience**, v. 39, n. 1, p. 87-94, 2004a.

WOOD, B. W.; REILLY, C. C.; NYCZEPIR, A. P. Mouse-ear of pecan: II. Influence of nutrient applications. **HortScience**, v. 39, n. 1, p. 95-100, 2004b.

WOOD, B. W.; REILLY, C. C.; NYCZEPIR, A. P. Field deficiency of nickel in trees: symptoms and causes. **Acta Horticulturae**, v. 721, p. 83-97, 2006a.

WOOD, B. W.; CHANEY, R.; CRAWFORD, M. Correcting micronutrient deficiency using metal hyperaccumulators: *Alyssum* biomass as a natural product for nickel deficiency correction. **HortScience**, v. 41, n. 5, p. 1231-1234, 2006b.